Page 107 - DCOM303_DMGT504_OPERATION_RESEARCH
P. 107

Operations Research




                    Notes                 For Cochin, x  + x  + x      = 2000
                                                     13  23  33
                                          For Goa, x  + x + x          = 4000
                                                  14  24   34
                                   The  linear  programming model  for  GM  Textiles  will  be write  in the  next line.  Minimize
                                   Z = 5x + 6x + 9x + 7x + 7x + 8x + 2x + 4x + 6x + 3x + 5x + 3x
                                        11   12   13   14   21   22   23   24   31   32   33   34
                                   Subject to constraints,
                                       X +x +x +x   6000      (i)
                                         11  12  13  14
                                       X +x +x +x   5000      (ii)
                                         21  22  23  24
                                       X +x +x +x   4000      (iii)
                                         31  32  33  34
                                       X +x +x  = 5000         (iv)
                                         11  21  31
                                       X +x +x  = 4000         (v)
                                         12  22  32
                                       X +x +x  = 2000         (vi)
                                         13  23  33
                                       X +x +x  = 4000         (vii)
                                         14  24  34
                                   Where, x  0 for i = 1, 2, 3 and j = 1, 2, 3, 4.
                                           ij

                                          Example: Consider the following  transportation  problem (Table  3.3) and develop  a
                                   linear programming (LP) model.

                                                            Table  5.3: Transportation  Problem

                                                                            Destination
                                          Source
                                                           1              2             3          Supply
                                            1              15            20            30            350
                                            2              10             9            15            200
                                            3              14            12            18            400
                                         Demand           250            400           300

                                   Solution:
                                   Let x be the number of units to be transported from the source i to the destination j, where i = 1,
                                       ij
                                   2, 3,…m and j = 1, 2, 3,…n.
                                   The linear programming model is
                                   Minimize Z = 15x +20x +30x +10x +9x +15x +14x +12x +18x
                                                 11   12   13   21  22   23   31   32   33
                                   Subject to constraints,
                                       x +x +x   350                                     (i)
                                        11  12  13
                                       x +x +x   200                                     (ii)
                                        21  22  23
                                       x +x +x   400                                    (iii)
                                        31  32  33
                                       x +x +x  = 250                                    (iv)
                                        11  12  31
                                       x +x +x = 400                                      (v)
                                        12  22  32
                                       x +x +x  = 300                                    (vi)
                                        13  23  33
                                       x   0 for all i and j.
                                        ij



          102                               LOVELY PROFESSIONAL UNIVERSITY
   102   103   104   105   106   107   108   109   110   111   112