Page 94 - DCOM303_DMGT504_OPERATION_RESEARCH
P. 94

Unit 4: Linear Programming – Duality




                                                                                                Notes
                 Example 3: Write the dual of the following problem. Show that the optimal solution for
          primal and dual are same.
          Minimise     ‘Z’ = 4x  + 3x  + 6x
                          1   2    3
          Subject to  x  + x   2
                      1   3
                     x  + x   5
                      2   3
                     x , x , x   0
                      1  2  3
          Solution:
          The dual for the given problem can be written as
          Maximise Z = 2y  + 5y
                        1   2
                                               1 0 1 
                                           A       
                                               0 1 1 
          Subject to  y   4
                      1
                     y    3
                      2
                     y  + y   6
                      1   2
                                                 1 0 
                                                   
                                             |  0 1
                                           A  =    
                                                  1 1 
                                                   
                     y , y   0
                      1  2
          Let us use simple technique to obtain the optimum solution.
          Maximise   ‘Z’ = 2y  + 5y
                            1   2
          Subject to  y  + y   = 4
                      1   3
                     y  + y  = 3
                      2   4
                     y  + y  + y  = 6
                      1   2   5
                                       
                                      
                                       
                                       
          Where, y , y  and y  are slack variables.
                 3  4     5
             BV    CB     XB     Y1      Y2       S1       S2      S3      Min. Ratio
             S1     0     4       1       0        1       0        0         –
             S2     0     3       0       1        0       1        0     3/1 = 3 (KR) ?
             S3     0     6       1       1        0       0        1       6/1 = 6
                          ZJ      0       0        0       0        0
                          CJ      2       5        0       0        0
                         ZJ – CJ   –2    –5        0       0        0
                                                                                 ( KC)






                                           LOVELY PROFESSIONAL UNIVERSITY                                   89
   89   90   91   92   93   94   95   96   97   98   99