Page 183 - DMGT404 RESEARCH_METHODOLOGY
P. 183

Unit 9: Correlation and Regression




                                      Table for Calculation of  r                               Notes
                                                                              2
                                                                      2
             X       q     p     Y    u = X – 17   v = Y – 40   uv   u       v
             15      250   200   80   – 2        40          – 80    4       1600
             16      200   150   75   – 1        35          – 35    1       1225
             17      150   90    60   0          20          0       0       400
             18      120   48    40   1          0           0       1       0
             19      100   30    30   2          – 10        – 20    4       100
             20      80    12    15   3          – 25        – 75    9       625
             Total                    3          60          – 210   19      3950

                                         -  6 210 3 60
                                                  ´
                                           ´
                                                -
                                r  =                      = -  0.99
                                                     -
                                       ´
                                               ´
                                          -
                                XY    6 19 9 6 3950 3600
                                                   )
                                                   2
          Probable error of r, i.e.,  . .( )P E r =  0.6745 ´  ë 1 é - (0.99 ù û  =  0.0055
                                                6
          9.1.6 Correlation in a Bivariate Frequency Distribution
          Let the two variables X and Y take respective values X , i = 1, 2, ...... m and Y , j = 1, 2, ...... n. These
                                                     i                j
          values, taken together, will make m × n pairs (X , Y ). Let f  be the frequency of this pair. This
                                                  i  j    ij
          frequency distribution can be presented in a tabular form as given below:
             Y        Y        Y       ...      Y        ...      Y        Total
                        1
                                                                    n
                                 2
                                                  j
             X 
             X         f        f       ...      f        ...      f        f
              1        11       12                1j                1n       1
             X         f        f       ...      f        ...      f        f
              2        21       22                2j                2n       2
                                                                
             X         f        f                f                 f        f
              i        i1       i2                ij                in       i
                                                                

             X         f        f       ...      f        ...      f        f
              m        m1       m2                mj                mn       m
             Total     f       f      ...      f       ...      f       N
                       1        2                 j                 n

          Here f  = f  = f  = N (the total frequency).
                 ij  i    j
          The formula for correlation can be written on the basis of the formula discussed earlier.
                                              N åå  f X Y - (å  f X  )(å  f Y   )
                                    r  =            ij  i  j  i  i  j  j
                                    XY                   2                 2
                                          N å  f X - (å  f X )  N å  f Y - (å  f Y   )
                                                                
                                                                  2
                                                2
                                              i  i    i  i      j  j    j  j
                                                                             X -  A
          When we make changes of origin and scale by making the transformations  u =  i   and
                                                                           i
                                                                               h
              Y -  B
           v =  j
            j      , then we can write
                k



                                           LOVELY PROFESSIONAL UNIVERSITY                                   177
   178   179   180   181   182   183   184   185   186   187   188