Page 194 - DMGT404 RESEARCH_METHODOLOGY
P. 194

Research Methodology




                    Notes          The necessary conditions for minima of S are
                                     ¶ S           ¶ S         ¶ S     ¶ S
                                   (i)     0  and (ii)     0,  where    and    are the partial  derivatives of  S w.r.t. a and b
                                       a ¶          b ¶         a ¶     b ¶
                                   respectively.
                                                           ¶ S     n
                                                                         -
                                                                 2
                                       Now                  a ¶   = - å 1 (Y -  a bX i ) 0
                                                                      i
                                                                  i
                                                                           n
                                                                 n
                                                  n
                                                                        -
                                                         -
                                                    Y -
                                       or         å  ( i  a bX i )  = å Y - na bå X   0
                                                                   i
                                                                              i
                                                  i 1           i 1     i  1
                                                                     n
                                                           n
                                                          å  i  = na b+ å
                                       or                   Y          X i                                .... (1)
                                                          i  1      i  1
                                                           ¶ S    n
                                                                    Y -
                                                                        -
                                       Also,                b ¶   = 2å 1  ( i  a bX  i  )( X-  i ) 0
                                                                  i
                                              n
                                                                 n
                                       or   - 2å (X Y -  aX -  bX i 2 )  = å (X Y -  aX -  bX 2 i  ) 0
                                                                      i
                                                        i
                                                   i
                                                  i
                                                                          i
                                                                    i
                                              i 1               i 1
                                                           n
                                            n
                                                    n
                                       or    å X Y - å X - å X 2 i  = 0
                                                  a
                                                         b
                                            i  1  i  i  i  1  i  i  1
                                                                n
                                                          n
                                                 n
                                       or               å X Y i  =  aå X + å X i 2                        .... (2)
                                                               b
                                                            i
                                                   i
                                                i 1     i 1   i 1
                                   Equations (1) and (2) are a system of two simultaneous equations in two unknowns  a and b,
                                   which can be solved for the values  of these  unknowns. These equations are also known as
                                   normal equations for the estimation of  a and  b. Substituting  these values of  a and b  in the
                                   regression equation Y  = a + b , we get the estimated line of regression of Y on X.
                                                    Ci     Xi
                                   Expressions for the Estimation of a and b.
                                   Dividing both sides of the equation (1) by n, we have
                                                å Y i    na  +  bå X  i
                                                                       +
                                                  n    n    n   or  Y   a bX                             .... (3)
                                   This shows that the line of regression Y  = a + bX  passes through the point ( ,X Y ) .
                                                                  Ci      i
                                   From equation (3), we have  a Y  - bX                                 .... (4)
                                   Substituting this value of a in equation (2), we have
                                                                             
                                                          SX Y  = ( Y -  bX ) X  + b X 2
                                                            i  i          i    i
                                                              = Y å X - å   X + å  X  nXY -  . b nX + å X i  2
                                                                                    2
                                                                                                2
                                                                       bX
                                                                               b
                                                                                                  b
                                                                     i
                                                                             i
                                                                                    i
                                                   å X Y - nXY  = ( b å X -  2 )
                                                                      2
                                   or                 i  i           i  nX
                                                                 å X Y -  nXY
                                                                     i
                                                                    i
                                   or                        b =  å X - nX  2                             .... (5)
                                                                     2
                                                                     i
          188                               LOVELY PROFESSIONAL UNIVERSITY
   189   190   191   192   193   194   195   196   197   198   199