Page 243 - DMGT404 RESEARCH_METHODOLOGY
P. 243

Unit 11: Index Numbers




          Similarly, the index number, given by the weighted geometric mean of price relatives can be  Notes
          written as follows:
                                       1            1               é å w logP ù
                                                  ù
                                            é
                                    n å
                P =  é ê ë P 1 w 1  .P 2 w  2   P n w ù ú û  w i  = Õ P i w å w i  or  P =  Antilogê ê ë å i  w i  i  ú ú û
                                            ê
                                                  ú
                                                 i
                                                           01
                 01
                                                  ú û
                                            ê ë
          Nature of Weights
          While taking weighted average of price relatives, the values are often taken as weights. These
          weights can be the values of base year quantities valued at base year prices, i.e., p q , or the
                                                                              0i 0i
          values of current year quantities valued at current year prices, i.e., p q , or the values of current
                                                                1i 1i
          year quantities valued at base year prices, i.e., p q , etc., or any other value.
                                                 0i 1i
               Example:  Construct  an index number for 1989 taking 1981 as base for the following data, by
          using
             1.  Weighted arithmetic mean of price relatives and
             2.  Weighted geometric mean of price relatives.
                                           Prices in Prices in
                              Commodities                   Weights
                                              1981     1989
                                   A          60     100      30
                                   B          20      20      20
                                   C          40      60      24
                                   D         100     120      30
                                   E         120      80      10

          Solution:
                                         Calculation  Table
                                                   Price Relative
                                  Price in   Price in
                         Item                          p          log P i
                                1985 (P ) 1990 (P )  P =  1i  ×100
                                               0i
                                      0i
                                                    i
                                                       p
                                                        0i
                           1        15         20     133.33     2.1249
                           2          8         7      87.50     1.9420
                           3      200       300       150.00     2.1761
                           4       60       110       183.33     2.2632
                           5      100       130       130.00     2.1139
                         Total                        684.16     10.6201


          \     Index  number  using  A.M.  is  P =  14866.8  =  130.41 and  index  number  using  G.M.  is
                                         01
                                              114
          P =  Antilog  é ê ë  239.498 ù ú  = 126.15
                       114 û
           01










                                           LOVELY PROFESSIONAL UNIVERSITY                                   237
   238   239   240   241   242   243   244   245   246   247   248