Page 289 - DMGT404 RESEARCH_METHODOLOGY
P. 289

Unit 13: Multivariate Analysis




             2.  The fact that a regression coefficient is independent of change of origin can also be  Notes
                 utilised to further simplify the computational work.
             3.  The regression coefficients of equations (2) and (3) can be written by symmetry as
                 given below:
                              (å x x  )(å x -  x x  )(å  x x )
                                         ) (å
                                        2
                         b   =    2 1   3      2 3  2  1 3
                                           ) (å
                         21.3     (å x 2 1 )(å x -  x x )
                                           2
                                                 1 3
                                           3
                                         ) (å
                              (å x x  )(å  x -  x x  )(å  x x )
                                        2
                         b   =    2 3   1      2 1    1 3
                                           ) (å
                         23.1     (å x 2 1 )(å  x -  x x ) 2
                                           2
                                           3
                                                 1 3
                 Further, b   = b   and b   = b   and the  expressions for the constant terms are
                         31.2  13.2   32.1  23.1
                  a  =  X -  b  X -  b  X  and  a  =  X - b  X -  b  X  respectively.
                   2.13  2  21.3  1  23.1  3  3.12  3  31.2  1  32.1  2
                Example:  Fit  a  linear  regression  of  rice  yield  (X   quintals)  on  the  use  of  fertiliser
                                                         1
          (X  kgs per acre) and the amount of rain fall (X  inches), from the following data:
            2                                   3
                  X           45      50     55     70     75     75     85
                    1
                  X           25      35     45     55     65     75     85
                    2
                  X           31      28     32     32     29     27     31
                    3

                 Estimate the yield when X  = 60 and X  = 25.
                                      2         3
          Solution:
                                         Calculation  Table
               X      X       X      X X     X X     X X       X       X       X
                                                                                 2
                                                                        2
                                                                2
                                                3
                                              1
                                                         3
                                                       2
                               3
                        2
                1
                                      1
                                        2
                                                                1
                                                                        2
                                                                                 3
               45     25      31     1125    1395     775     2025     625     961
               50     35      28     1750    1400     980     2500    1225     784
               55     45      32     2475    1760     1440    3025    2025    1024
               70     55      32     3850    2240     1760    4900    3025    1024
               75     65      29     4875    2175     1885    5625    4225     841
               75     75      27     5625    2025     2025    5625    5625     729
               85     85      31     7225    2635     2635    7225    7225     961
              455     385    210    26925    13630   11500   30925    23975   6324

          From the above table we compute the following sums of product and sums of squares:
                                                                        ´
                                                  å
                                                        å
                                 å x x  = å X å X  –  ( X 1 )( X 2 )  =  26925 –  455 385  =  1900
                                   1 2     1   2      n                 7
                                               å
                                                     å
                                                                     ´
                                               ( X  )( X  )       455 210
                                 åx x  = S X X  –  1    3  =  13630 –     =  –20
                                   1 3    1  3      n                7
                                           LOVELY PROFESSIONAL UNIVERSITY                                   283
   284   285   286   287   288   289   290   291   292   293   294