Page 322 - DMTH201_Basic Mathematics-1
P. 322

Unit 12: Successive Differentiation




                                                                                                Notes
                     2
                    d y  dy             1
                  x         =   sin(log )
                                      x
                    dx 2  dx            x
                    2
                   d y   dy
                 x 2   x    =  y
                   dx 2  dx
                                      (6)
                 Example: f(x) = e  sin x    f  (x) is equal to:
                              x
          Solution:
                               ax
                        f(x) = e  sin bx
                                2
                        n
                                   2 n/2
                                        ax
                                                     -1
                       f  (x) = (a  + b )  .e  sin(bx + n tan  b/a)
                          a = 1, b = 1, n = 6
                                      6
                                                   1
                         x
                       f  6 ( ) =  (1 1) e x  sin x  6tan (1)
                                     3
                                               x
                                               e
                            = 8 sine x   x    8 cosx
                                     2
                               d n
                 Example: If In   x  n log x  , then I n  nI n  1   is equal to:
                              dx n
          Solution:
                               d n
                          I  =    x n  log x
                          n      n
                               dx
                                             1
                          y = x n  log x  y  1  x n  nx  n  1  log x
                                             x
                       (y )  = nI  + (n   1)!
                        1 n-1   n-1
                     I    nI  = (n   1)!
                     n   n-1

                 Example: If y = ae  + be  + c, where a, b, c are parameters, then y”’ is equal to:
                                   -x
                               x
          Solution:
                                     -x
                                x
                          y = ae  + be  + c
                                     -x
                         y’ = ae    be  ;
                                x
                                x
                         y” = ae  + be -x
                                x
                         y”’ = ae    be -x
                         y”’ = y’

                 Example: If y = a cos (log x) + b sin (log x), where a, b are parameters, then x y” + xy’ is
                                                                              2
          equal to:
          Solution:
                          y = a cos (log x) + b sin (log x)

                         xy’ =  a sin(log x) + b cos(log x)




                                           LOVELY PROFESSIONAL UNIVERSITY                                   315
   317   318   319   320   321   322   323   324   325   326   327