Page 317 - DMTH201_Basic Mathematics-1
P. 317

Basic Mathematics – I




                    Notes


                                     Notes
                                                                 th
                                           Sr no.   Function    n  derivative
                                           01      y = e        yn = a  e
                                                                    n
                                                       ax
                                                                      ax
                                                                            n
                                                       ax
                                           02      y = b        yn = a  b  (logeb)
                                                                      ax
                                                                    n
                                           03      y = (ax + b)    (i)  if m is integer greater than n or less than (–1) then,
                                                           m
                                                                    yn = m(m – 1)(m – 2)…(m – n + 1) a (ax + b) m-n
                                                                                             n
                                                                (ii)  if m is less than n then, yn = 0
                                                                (iii) if m = n then, yn = a  n!
                                                                                  n
                                                                                     n
                                                                                  ( 1) n !a n
                                                                (iv)  if m = -1 then, y
                                                                                n      n  1
                                                                                  (ax b )
                                                                                     n
                                                                                  ( 1) (n  1)!a n
                                                                (v)  if m = -2 then, y n
                                                                                    (ax b )
                                           04      y = log (ax +b)   ( 1) n  1 (n  1)!a  n
                                                                 y n
                                                                       (ax b ) n
                                    th
                                                                           th
                                  n   derivatives  of  reciprocal  of  polynomials  (n   derivatives  of  functions  which  contain
                                  polynomials in denominators) :
                                  Consider
                                                                 ax b            1
                                                            y           or y
                                                               cx 2  dx  e   cx  2  dx  e
                                  To find n  derivative of above kind function first obtain partial fractions of f(x) or y.
                                          th
                                  To get partial fractions:
                                           1
                                                                  2
                                  If  y           then first factorize cx  + dx + e.
                                        cx 2  dx  e
                                                                       1
                                  Let (fx + g) (hx + i) be factors then  y
                                                                 ( fx  g )(hx i )
                                                         A     B
                                  Find A & B such that  y
                                                       fx  g  hx i
                                         th
                                                                                                     th
                                  obtain n  derivatives of above fractions separately and add them, answer will give n  derivative
                                  of y.



                                     Notes  If polynomial in denominator is of higher Degree then we will have more factors.
                                     (Do the same process for all the factors).
                                               1                          A      B     C
                                     If  y             then use factors  y
                                                2
                                          ( fx  g ) (hx i )            ( fx  ) g  2  hx i  fx  g







          310                               LOVELY PROFESSIONAL UNIVERSITY
   312   313   314   315   316   317   318   319   320   321   322