Page 312 - DMTH201_Basic Mathematics-1
P. 312

Unit 12: Successive Differentiation




                                                                                                Notes
                                    m  1      1
                        m x    x  2  1  1          2x
                                           2 x 2  1
                                         x 2  1 x
                                    m  1
                        m x    x 2  1
                                           x  2  1
                                       m
                          m   x  2  1 x
                   i.e., y 1
                               x 2  1

                     x 2  1y  1  my                                                ...(i)

               Differentiating again w.r.t. x, we get
                               1
                 x  2  1y 2  y 1    2x   my 1
                           2 x 2  1
               Multiplying throughout by   x 2  1  , we get

                x  2  1 y 2  xy 1  my 1  x 2  1


                    x 2  1 y  2  xy 1  m my  (using (1))

                                              2
               i.e.,          x 2  1 y 2  xy 1  m y
                                             2
                              x 2  1 y 2  xy 1  m y  0
          Alternate: Squaring equation (i)

                                 2
               We get  x  2  1 y  2 1  m y 2
               Differentiating w.r.t. x,
                x  2  1 2y y  2  y  2 1  2x  m  2 2yy 1  (cancelling  2y )
                        1
                                                       1
                                    2
                    x 2  1 y  2  xy 1  m y
                                   2
               i.e., x 2  1 y  2  xy  1  m y  0


                                                   2
                 Example: If  y  ax n  1  bx  n  , prove that  x y  n n  1 y  0 .
                                                    2
          Solution:  y  ax n  1  bx  n
                                           )
                       y 1  (n  1)ax  n  1 1  ( b n x  n  1
                         n  1 ax  n  bnx  n  1
                       y 2  n  1 nax n  1  bn  n  1 x  n  1 1
                       y   n  1 nax n  1  bn n  1 x  n  2
                        2
                  x 2  y  (n  ) 1 nax n  1  . x 2  bn (n  ) 1 x  n  2 .x  2
                    2
                     2
               i.e.,  x y 2  n  1 nax  n  1  bn n  1 x  n





                                           LOVELY PROFESSIONAL UNIVERSITY                                   305
   307   308   309   310   311   312   313   314   315   316   317