Page 112 - DMTH202_BASIC_MATHEMATICS_II
P. 112

Unit 8: Formation of Differential Equation




          Differentiating (1) w.r.t. x, we have                                                 Notes
                   dy   x                x
                      e c  cosx  c  2 sinx  e   sinc  1  x  c  2 cosx  
                          1
                   dx
                   dy
          or           e  x   sinc  1  x  c  2  cosx                    ……….(2)
                       y
                   dx
          Differentiating again w.r.t. x, we have

                   2
                  d y    dy   e x   sinc  x   c  cosx   e x   cosc  x  c  sin   x
                  dx 2  dx     1     2           1      2
                      dy   dy  
                            y   y         by(1)and(2) 
                      dx   dx  

                   2
                  d y   dy
          or          2   2y   0
                  dx  2  dx
          which is the required differential equation.




             Notes   The  differential  equation  of  two  arbitrary  constants  family  is  attained  by
             differentiating the equation of the family twice and by eliminating the arbitrary constants.


                 Example: Form a differential equation to represent the family of curves y = A cos x +
          B sin x
          Solution:
          Since, y = A cos x + B sin x

                  dy
                       A sin   + B cos x
                           x
                  dx
                   2
                  d y
                        A cos   + B sin     (A cos   + B sin  )
                                   x
                            x
                                            x
                                                   x
                  dx  2
                   y
                   2
                  d y
          i.e.,     2  + y = 0.
                  dx
          Hence, the required differential equation is
                   2
                  d y    + y = 0.
                  dx 2


                 Example: Form a differential equation of the family of curves y = Aex +   Be 2x   for different
          values of A and B.
          Solution:
          Given, y = Aex +   Be 2x                                                ...(1)




                                           LOVELY PROFESSIONAL UNIVERSITY                                   107
   107   108   109   110   111   112   113   114   115   116   117