Page 113 - DMTH202_BASIC_MATHEMATICS_II
P. 113

Basic Mathematics-II




                    Notes          Differentiation (1) w.r.t. x, we get
                                   dy     x     2x
                                        A e   2Be                                                        ...(2)
                                   dx
                                   Differentiating (2) again, we get

                                    2
                                   d y      x       2x
                                         A e    4Be
                                     2
                                   dx
                                                      2
                                                            Be
                                             Ae   x 2Be   2x    Ae x     2x  
                                             dy
                                          =     2y    from (1) and (2).
                                             dx
                                   Thus, the required differential equation is
                                    2
                                   d y  dy
                                             y
                                            2   0.
                                     2
                                   dx   dx
                                          Example: Form the differential equation of simple harmonic motion given by  x  =  A
                                   cos(nt + B)
                                   Solution:

                                   The given equation is x = A cos(nt + B)                                 ...(1)
                                   Differentiating (1) with respect to ‘t’, we get

                                   dx
                                        Asin(nt   B).n                                                  ...(2)
                                   dt
                                   Differentiating (2) again with respect to ‘t’, we have

                                    2
                                   d x                  2       2
                                         A cos(nt   B).n    An  cos(nt   B)
                                   dt 2
                                    n2x,  from (1)

                                       2
                                      d x  2
                                   or,    n x   0  is the required differential equation.
                                      dt  2

                                                                                           ~1
                                                                                                 ~1
                                          Example: Form the differential equation from the relation sin x + sin y = C
                                   Solution:
                                          ~1
                                                 ~1
                                   Given sin x + sin y = C
                                   Differentiating (1) w.r.t. ‘x’, we have
                                      1        1    dy
                                                        0
                                    1 x 2   1 y 2 dx







          108                               LOVELY PROFESSIONAL UNIVERSITY
   108   109   110   111   112   113   114   115   116   117   118