Page 136 - DMTH202_BASIC_MATHEMATICS_II
P. 136

Unit 10: Homogeneous Equations




                                                                                                Notes
                             dy      dv
                                 v
                      ,
          Putting  y   vx so that     x
                             dx      dx
                            dy  1   v 2
           (1) reduces to  v x  
                            dx   2v
                   dv  1  v  2  1  3v 2
                             v
          or      x         
                   dx   2v       2v
                   2v      dx
          or          2  dv  
                  1  3v    x
          Integrating, we get

                   1        2
                   log  1 3v    log x c
                                   
                   3
          or      3log x   log  1 3v  2   3c


          or      log x 3   1 3v 2    3c

                      3y  3    3c
                   3
                                 c
          or      x   1   2     e   '  : y   vx 
                       x  
                      3y  2  
                   3
                             c
          or      x   1    2     '
                       x  
          or        x x  2   3y  2   'c

          which is the required general solution.

                               2
                 Example: Solve  y dx    xy   x  2   dy   0
          Solution:

               dy     y 2
          Here         2                                                        …(1)
               dx   xy   x
                             dv     dv
                                v
          Putting y = vx, so that     x
                            dx      dx
                            dv  v 2
           (1) reduces to  v x  
                            dx  1  v

                   dv   v   2v 2
          or      x   
                   dx    1  v
                           
                   dx   1 v dv
          or              2
                   x    v   2v




                                           LOVELY PROFESSIONAL UNIVERSITY                                   131
   131   132   133   134   135   136   137   138   139   140   141