Page 136 - DMTH202_BASIC_MATHEMATICS_II
P. 136
Unit 10: Homogeneous Equations
Notes
dy dv
v
,
Putting y vx so that x
dx dx
dy 1 v 2
(1) reduces to v x
dx 2v
dv 1 v 2 1 3v 2
v
or x
dx 2v 2v
2v dx
or 2 dv
1 3v x
Integrating, we get
1 2
log 1 3v log x c
3
or 3log x log 1 3v 2 3c
or log x 3 1 3v 2 3c
3y 3 3c
3
c
or x 1 2 e ' : y vx
x
3y 2
3
c
or x 1 2 '
x
or x x 2 3y 2 'c
which is the required general solution.
2
Example: Solve y dx xy x 2 dy 0
Solution:
dy y 2
Here 2 …(1)
dx xy x
dv dv
v
Putting y = vx, so that x
dx dx
dv v 2
(1) reduces to v x
dx 1 v
dv v 2v 2
or x
dx 1 v
dx 1 v dv
or 2
x v 2v
LOVELY PROFESSIONAL UNIVERSITY 131