Page 157 - DMTH202_BASIC_MATHEMATICS_II
P. 157

Basic Mathematics-II




                    Notes            (1) becomes
                                          dz       3
                                               2z.   x , which is linear in z.
                                          dx

                                          I.F.   2  2xdx    e  x 2  .

                                         The solution is
                                             2      2
                                                 3
                                                   x
                                           ze x    x .e dx c
                                                       
                                                        2
                                                     2
                                                       x
                                                            
                                                    x .e .xdx c
                                                   1  t           2
                                                    te dt c  (t   x  )
                                                         
                                                   2
                                                   1  t
                                                    e  t   1  c
                                                   2
                                                    2    2
                                                            2
                                                 ze  x    1 x   x    1  c
                                                        e
                                                       2
                                                    1   2       x 2
                                   or            z    x    1  ce
                                                    2
                                                       1   2      x  2
                                                tan y    x    1  ce
                                                       2
                                   which is the required solution.


                                          Example:

                                        dy   y   2
                                   Solve       y .
                                        dx   x
                                   Solution:
                                                        2
                                   Dividing throughout by y , we have
                                                  1    dy    1  .  1    1
                                                  y 2  dx  x  y                                           …..(1)

                                          1
                                   Putting    z
                                          y

                                            1 dy   dz
                                           2      .
                                            y  dx  dx
                                    Equation (1) becomes

                                                  dz  1
                                                       z   1                                           …..(2)
                                                  dx  x
                                   which is linear in z.



          152                               LOVELY PROFESSIONAL UNIVERSITY
   152   153   154   155   156   157   158   159   160   161   162