Page 26 - DMTH202_BASIC_MATHEMATICS_II
P. 26

Unit 2: Integration by Partial Fraction




                                                                                                Notes
                 Example: of method 1

                     5x  2 2x   7
          Articulate    2      in integrable form:
                   (x   2) (x   3)

           a   a  (x   2)  a
           10  11       20
             (x   2) 2  x   3

                       x
                                
                              x
          Deduce  Z  ( )    3,Z  ( ) (x   2) 2
                   x
                  1         2
          Use formulae to obtain
                      R (2)  5 * 4 2 * 2 7
                                     
                                
                  a                    17
                   10
                      Z 1 (2)     1
                                    R
                          Z
                      R '(2) (2) Z  '(2) (2)  (20 2)( 1) 1(17)
                                            
                                                   
                                                
                              
                  a       1     1                         39
                   11
                             Z 2 1  (2)        ( 1) 2
                                                
                      R (3)  5 * 9 2 * 3 7
                                
                                     
                  a                    44
                   20
                      Z  (3)     1
                       2
                                         x
              Task  Evaluate the integral    dx  using partial fraction expansions.
                                      2
                                     x   4x   4
          2.2.2  Method 2: Cover Up
          Mimic proof of theorem:
          Here, set  R   , R k  .
                           0
                    0 j
                          R jk ( )
                             q
                              j
          1.   Deduce:   a   Z  ( )
                       jk
                             q
                            j  j
                            x
                                    x
                              
                          R  ( ) a Z  ( )
          2.   Set  R  ( j k  1) x   jk  jk  j
                               
                             (x q  j )
          3.   Set k = k + 1, go to step 1.
                 Example: of method 2
          In the preceding example, you figured out a  and a  as before but get a  by replacing R(x) by
                                              10    20              11
          R (x) provided by:
           11
                        R ( ) a Z  ( )
                                  x
                          x
                            
                  R 11 ( )   10  1
                     x
                            x q 1
                             
                          2
                        5x   2x   7 ( 17)(x  3)
                                 
                                   
                      
                                x   2
                        5x   29
                        R  (2)
                    a   11    39
                     11
                        Z  (2)
                         1
                                           LOVELY PROFESSIONAL UNIVERSITY                                   21
   21   22   23   24   25   26   27   28   29   30   31