Page 304 - DMTH201_Basic Mathematics-1
P. 304

Unit 11: Parametric Differentiation




                                                                                                Notes
                         dy
              Task  Find   dx  ,if
                            2 – t
                    (i)  x =
                            2 t
                             2t
                    (ii)  y      (note x + y = 1)
                            2 t

          11.5 Summary

               If the variables x and y are given in terms of a new variable t, then the function is said to
               be in the parametric form and ‘t’ is called the parameter.
               In general, the parametric function is given by  x  f t  ,y  g t  where  f t  and  g t
               are functions of the parameter t.
               x   f t  ,y  g t  are called the parametric equations.

          11.6 Keywords


          Parameter: If the variables x and y are given in terms of a new variable t, then the function is said
          to be in the parametric form and ‘t’ is called the parameter.
          Parametric Equations: In general, the parametric function is given by  x  f t  ,y  g t  where
           f t  and  g t  are functions of the parameter t.
          x   f t  ,y  g t  are called the parametric equations.

          11.7 Self Assessment


                                    dy
          1.   x  t   t y  t  t   then
                                    dx
                    3t
               (a)                               (b)  cot t
                     2

                    2 t  1                            4te t
               (c)                               (d)
                    2 t  1                            1 t
                                  dy
          2.   x  te  t  , y  2t  2  1 then
                                  dx

                    5  3                              2 t  1
               (a)   t                           (b)
                    4                                 2 t  1

                    4te t
               (c)                               (d)  cost
                    1 t
                   3
          3.   x = 2t  + 1, y = te , determine co-ordinater of the stationary points.
                             -2t
                     5  1
               (a)    ,                          (b)  1   2, 16
                     4 2e



                                           LOVELY PROFESSIONAL UNIVERSITY                                   297
   299   300   301   302   303   304   305   306   307   308   309