Page 111 - DMTH202_BASIC_MATHEMATICS_II
P. 111

Basic Mathematics-II




                    Notes
                                                        dy
                                   or      (x – h) + (y – h)   = 0                                    ………..(2)
                                                        dx
                                   Differentiating again, we have

                                                     2
                                                    d y   dy   2
                                           1 + (y – k)   2       = 0                               ………..(3)
                                                    dx    dx  
                                                              2
                                                           dy  
                                                        1     
                                   From (3),     y       dx  
                                                    k
                                                           2
                                                          d y
                                                          dx 2
                                                                  dy     dy    2 
                                                                    1      
                                                              dy  dx      dx    
                                   and from (2),  x – h =    y k   
                                                          
                                                                       2
                                                              dx      d y
                                                                      dx 2
                                   Substituting the values of (x – h) and (y – k) in (1), we get

                                              2        2  2       2  2
                                           dy       dy         dy    
                                               1         1       
                                           dx       dx         dx      2
                                                                 1  r
                                                    1
                                                               2
                                                 2
                                                d y         d y  
                                                 2           2  
                                                 dx         d x  
                                                   2                 2
                                                                   2
                                             dy   2   dy  2    2   d y  
                                                     
                                   or     1               1   r    2  
                                              dx       dx        dx  
                                                  
                                                          2
                                             dy   2   3  2   d y   2
                                   or     1           r    2  
                                              dx        dx  
                                   which is the required differential equation.


                                      Task  Find the differential equations of all straight lines in a plane.


                                          Example: Eliminate the constants from the equation
                                           y = e (C  cos x + c  sin x)                                 ……….(1)
                                                 1       2
                                   and obtain the differential equation.

                                   Solution:
                                   There are two arbitrary constants c  and c  in equation (1).
                                                               1    2








          106                               LOVELY PROFESSIONAL UNIVERSITY
   106   107   108   109   110   111   112   113   114   115   116