Page 82 - DMTH201_Basic Mathematics-1
P. 82

Unit 4: Determinants




                                                                                                Notes
                               a 1  b 1
                          If  A      ,
                               a  b
                                2  2
                 Cofactor of  a  ( 1) 1 1 ( )  b
                                    b
                            1        2    2
                 Cofactor of  b  ( 1) 1 2 ( )  a
                                    a
                            1        2    2
                 Cofactor of  a  ( 1) 2 1 ( )  b
                                    b
                            2        1    1
                                     a
                 Cofactor of  b  ( 1) 2 2 ( )  a
                            2        1    1
          The signs of the cofactors are



                                a 1  b 1  c 1
                           If  A  a  b  c  ,
                                2   2  2
                                a 3  b  3  c 3


                                    b  c
                 Cofactor of  a 1  ( 1) 1 1  2  2  (b c  b c  )
                                              2 3
                                                  3 2
                                    b 3  c 3
                                    a 2  c 2
                 Cofactor of  b 1  ( 1) 1 2  (a c  a c  )
                                                  3 2
                                              2 3
                                    a   c
                                     3  3

             Notes  If element of a row (or column) are multiplied with cofactors of any other row (or
             column), then their sum is zero.
                                    a 2  b 2
                 Cofactor of  c  ( 1) 1 3   (a b  a b  )
                            1                 2 3  3 2
                                    a 3  b 3

                                    b   c
                 Cofactor of  a  ( 1) 2 1  1  1  (b c  b c  )
                            2                 1 3  3 1
                                    b 3  c  3
                                    a   c
                 Cofactor of  b 2  ( 1) 2 2  1  1  (a c  a c  )
                                                   3 1
                                              1 3
                                    a 3  c 3
                                    a 1  b 1
                 Cofactor of  c 2  ( 1) 2 3  (a b  a b  )
                                              1 3
                                                   3 1
                                    a   b
                                     3  3
                                    b 1  c 1
                 Cofactor of  a 3  ( 1) 3 1  (b c  b c  )
                                                   2 1
                                              1 2
                                    b   c
                                     2  2
                                    a 1  c 1
                 Cofactor of  b  ( 1) 3 2     (a c  a c  )
                            3                  1 2  2 1
                                    a 2  c 2


                                           LOVELY PROFESSIONAL UNIVERSITY                                   75
   77   78   79   80   81   82   83   84   85   86   87