Page 225 - DMGT209_QUANTITATIVE_TECHNIQUES_II
P. 225

Quantitative Techniques-II



                      Notes                                  n            n
                                                                       
                                    or                        Y i  =  na b  X i                           .... (1)
                                                             i 1          i 1
                                                                          
                                                             
                                                                S ¶    n
                                                                             
                                    Also,                         = 2  Y  a bX i  X  i    0
                                                                          i
                                                               ¶ b
                                                                      i 1
                                                                       
                                                 n                    n
                                    or          2  X Y   aX   bX  2 i   =  X Y   aX   bX  2 i    0
                                                           i
                                                                           i
                                                      i
                                                                               i
                                                     i
                                                                         i
                                                 i 1                 i 1
                                                 
                                                                      
                                              n       n      n
                                    or         X Y   a   X   b  X  2 i  = 0
                                                   i
                                                 i
                                                         i
                                                      
                                                             
                                              i 1     i 1    i 1
                                              
                                                            n          n     n
                                                                     a
                                    or                      X Y i  =  X   b   X 2 i                     .... (2)
                                                                         i
                                                               i
                                                            
                                                                       
                                                           i 1        i 1    i 1
                                                                             
                                    Equations (1) and (2) are a system of two simultaneous equations in two unknowns a and b,
                                    which can be solved for the values of these unknowns. These equations are also known as
                                    normal equations for the estimation of a and b. Substituting these values of a and b in the
                                    regression equation Y  = a + b , we get the estimated line of regression of Y on X.
                                                      Ci     Xi
                                    Expressions for the Estimation of a and b.
                                    Dividing both sides of the equation (1) by n, we have
                                                              Y i   na  b  X  i
                                                                  =            or  Y   a bX               .... (3)
                                                                                      
                                                              n       n    n
                                                                                                      
                                    This shows that the line of regression Y  = a + bX  passes through the point  X, Y .
                                                                    Ci      i
                                    From equation (3), we have  a = Y bX                                   .... (4)
                                    Substituting this value of a in equation (2), we have
                                                                                  
                                                             SX Y =  Y bX   X  i    b X i 2
                                                               i  i
                                                                                                    2
                                                                                         2
                                                                                               
                                                                  = Y  X   bX  X  b  X  nXY b.nX  b   X  2 i
                                                                                         i
                                                                                  i
                                                                          i
                                                                          2
                                    or                 X Y   nXY =  b   X   nX  2 
                                                           i
                                                                          i
                                                          i
                                                                      X Y   nXY
                                                                          i
                                                                         i
                                    or                          b =      2    2                             .... (5)
                                                                       X   nX
                                                                         i
                                    Also,              X Y   nXY =   X   X  Y   Y 
                                                                               i
                                                                         i
                                                           i
                                                          i
                                                           2
                                    and                  X   nX  2  =   X   X  2
                                                           i
                                                                         i
                                                                       X  X  Y  Y 
                                                                         i
                                                                               i
                                                               b =             2                           .... (6)
                                                                          X   X 
                                                                            i
            220                              LOVELY PROFESSIONAL UNIVERSITY
   220   221   222   223   224   225   226   227   228   229   230