Page 66 - DCOM303_DMGT504_OPERATION_RESEARCH
P. 66

Unit 3: Linear Programming Problem – Simplex Method




          Step 6: Third iteration of Simplex Method.                                            Notes
            BV   CB     XB       Y1      Y2   Y3   S1   S2   S3   S4   S5   S6   S7   Min.
                                                                              Ratio
             S1   0   9 – 24.4   0.10 –   0.12 –   0   –   –   –   –   –   –   –   6.072/0.078
                     (0.12) = 6.07   0.18   1                               = 77.85 (KR)
                                 (0.12=    (0.12)                               
                                0.078   = 0
             S2   0   13.8–24.4   0.06 –   0.05 –   0   –   –   –   –   –   –   –   12.58/0.051
                     (0.05)=12.58   18   1                                    = 246.67
                                 (0.05)    (0.05)
                                =0.05   = 0
             S3   0   24.4/1 =   0.18/1   1/1 =   0   –   –   –   –   –   –   –   24.4/0.18
                        24.4    = 0.18   1                                    = 135.56
             S4   0   23.6–24.4   0.13 –   0.10 –   0   –   –   –   –   –   –   –   21.16/0.112
                     (0.10)=21.16   0.18   1                                  = 188.93
                                 (0.10)   (0.10)
                                = 0.112   = 0
             S5   0   200 – 24.4   1–0.18   0    0   –   –   –   –   –   –   –   200/1 = 200
                      (0) = 200   (0)=1
             S6   0   100 – 24.4   0 – 0.18   1 – 1   0   –   –   –   –   –   –   –   75.6/–0.18 =
                      (1) = 75.6   (1)    (1) =0                               –420
                                = –0.18
             Y3   15   180 – 0    0      0    1   –   –   –   –   –   –   –   180/0 = 0
                       =180
                        Zj       2.16    12   15
                        Cj       10      12   15
                       Zj – Cj   –7.84   0    0
                                ( KC)
          Therefore, Z = C X
                       B  B
                            =  (0×6.072) + (0×12.58) + (12×24.4) + (0×21.16) + (0×200) + (0×75.6) + (15×180)
                           = 2,992.8
          Step 7: Fourth iteration of Simplex Method.

            BV   CB       XB             Y1       Y2   Y3   S1   S2   S3   S4   S5   S6   S7   Min.
                                                                                 Ratio
             y1   10   6.072/0.078 = 77.85   0.078/0.078 = 1   0   0   –   –   –   –   –   –   –   –
             S2   0   12.58 – 77.85(0.051)=   0.051 – 1(0.051) = 0   0   0   –   –   –   –   –   –   –   –
                          8.61
             y2   12   24.4 – 77.85(0.18)=   (0.18) – 1(0.18) = 0   1   0   –   –   –   –   –   –   –   –
                         10.387
             S4   0   21.16 – 77.85(0.112)=   0.112 – 1(0.112) = 0   0   0   –   –   –   –   –   –   –   –
                         12.44
             S5   0   200 – 77.85(1)= 122.15   1 – 1(1) = 0   0   0   –   –   –   –   –   –   –   –
             S6   0   75.6 – 77.85(–0.18)=   –0.18 – 1(–0.18) = 0   0   0   –   –   –   –   –   –   –   –
                         89.613
             y3   15   180 – 77.85(0) = 180   0   0   1   –   –   –   –   –   –   –   –
                          Zj             10       12   15
                          Cj             10       12   15
                         Zj – Cj         0        0   0








                                           LOVELY PROFESSIONAL UNIVERSITY                                   61
   61   62   63   64   65   66   67   68   69   70   71