Page 95 - DCOM303_DMGT504_OPERATION_RESEARCH
P. 95

Operations Research




                    Notes           BV   CB     XB       Y1       Y2      S1        S2        S3     Min. Ratio
                                     S1   0     4        1        0        1        0         0       4/1 = 4
                                     y2   5     3        0        1        0        1         0         ––
                                     S3   0   6–3 (1)= 3   1–0 (1)= 1   1–1 (1)= 0   0–0 (1)= 0   0–1 (1)= –1   1–0 (1)= 1   3/1 = 3 KR
                                                ZJ       0        5        0        5         0
                                                CJ       2        5        0        0         0
                                              ZJ – CJ    –2       0        0        5         0
                                                                 ( KC)

                                    BV   CB     XB        Y1        Y2       S1        S2         S3     Min.
                                                                                                         Ratio
                                    S1   0   4–3 (1) = 1   1–1 (1) = 0   0–0 (1) = 0   1–0 (1) = 1   0+1 (1) = 1   0–1 (1) = –1   -
                                    y2   5      3         0         1         0         1         0        -
                                    y1   2      3         1         0         0        –1         1        -
                                                ZJ        2         5         0         3         2
                                                CJ        2         5         0         0         0
                                               ZJ – CJ    0         0         0         3         2

                                   Z  = 15 + 6
                                   Z  = 21
                                   Z  – C  = 0 for all V, hence the solution is optimal with Z = 21 at y  = 3 and y  for the dual form.
                                    J  J          j                                    1        2
                                   Now, let us take the primal form and obtain the optimal solution.
                                   Minimise Z = 4x  + 3x  + 6x
                                                1   2    2
                                   Subject to     x  + x   2
                                                  1   3
                                                 x  + x   5
                                                  2  3
                                                 x , x , x   0
                                                  1  2  3
                                   Maximise Z’ = –4x – 3x  – 6x
                                                     2   3
                                   Subject to    x  + x  – x  + a   = 2
                                                  1  3   4  1
                                          x  + x  – x  +a   = 5
                                           2  3  5  2
                                   Where x  and x  are surplus variables; a  and a  are artificial variables.
                                         4     5                   1    2
                                    BV   CB    XB     y1     y2      y3     S1   S2    a1   a2     Min. Ratio
                                     a1   –M    2      1     0       1      –1    0    1    0     2/1 = 2 KR
                                     a2   –M    5      0     1       1      0    –1    0    1       5/1 = 5
                                                Zj    –M     –M     –2M
                                                Cj    –4     –3      –6
                                              Zj – Cj   –M+4   –M+3   –2M+6
                                                                                                              ( KC)

                                   Z = –7M











          90                                LOVELY PROFESSIONAL UNIVERSITY
   90   91   92   93   94   95   96   97   98   99   100