Page 291 - DCOM203_DMGT204_QUANTITATIVE_TECHNIQUES_I
P. 291

Quantitative Techniques – I




                    Notes                                                        n r
                                     m r     lim                        1     m
                                       .       n n  1 n  2  ....  n r  1 .  r  . 1
                                      ! r  n                            n     n

                                                  n    1     2         r  1     m  n
                                                    1     1     ....  1      1
                                      r           n    n     n          n       n
                                     m     lim
                                   =   .                             r
                                     r!  n                         m
                                                                1
                                                                   n
                                      r             n
                                     m            m
                                            lim       1   since each of the remaining terms will tend to unity as  n
                                      ! r         n
                                              n

                                                                                   m
                                                                                n
                                                             n
                                     r
                                   m .e -m      lim       m       lim        m  m
                                          since       1                  1            e  m
                                      ! r      n          n     n            n
                                   Thus, the probability mass function of Poisson distribution is
                                          m  r
                                        e  .m
                                   P r        , where r  0,1,2, ......
                                           ! r
                                   Here e is a constant with value = 2.71828... . Note that Poisson distribution is a discrete probability
                                   distribution with single parameter  m.

                                                       m  r             2    3
                                                      e  .m    m    m  m    m
                                   Total probability         e   1               ....
                                                         ! r        1!  2!  3!
                                                   r  0
                                                     m m
                                                   e  .e  1
                                   14.1.2 Summary Measures of Poisson Distribution

                                   1.  Mean: The mean of a Poisson variate r is defined as

                                                   m  r          r                3   4
                                                 e  .m    m     m      m      2  m   m
                                        E r      . r     e           e   m m              ....
                                                    ! r        r  1 !            2!  3!
                                             r  0           r  1
                                                      2   3
                                            m        m   m           m m
                                         me   1 m             ....  me  e  m
                                                     2!  3!
                                   2.  Variance: The variance of a Poisson variate is defined as
                                                          2
                                                     2
                                       Var(r) = E(r - m)  = E(r ) - m 2
                                                       2
                                       Now  E r  2    r P r     r r  1  r P r
                                                   r  0      r  0








          286                               LOVELY PROFESSIONAL UNIVERSITY
   286   287   288   289   290   291   292   293   294   295   296