Page 143 - DECO401_MICROECONOMIC_THEORY_HINDI
P. 143

bdkbZ 6 % ek¡x o ek¡x dh yksp osQ fl¼kar





                                                                  1       )                      uksV
                                                                    P+ P
                            ∆ Q         ∆ P             ∆ Q       2  ( 1
               E   = (–)            ÷           = (–)           ×
                d
                        1            1               1               ∆ P
                          (Q+ Q  )     ( 1    )       (Q+ Q   )
                                        P+ P
                                                         1
                            1
                         2           2               2
                                                ;k
                                     1
                                       P +
                          Q −  Q     2  ( 1  P )    Q −  Q    P +  P
                           1
                                                               1
                                                     1
               E   = (–)           ×           = (–)        ×
                d       1             P −  P             Q        P
                                                               1
                                                     1
                          (Q+ Q  )      1           Q +       P −
                            1
                         2
          (;gk¡ Q = izkjafHkd ek¡x_ Q  = ubZ ek¡x_ P = izkjafHkd dher_ P  = ubZ dherA)
                               1                          1
          pki yksp fofèk osQ vuqlkj ;fn ,d oLrq dh dher esa leku vuqikr esa o`f¼ ;k deh gksrh gS vkSj
          ifj.kkeLo:i oLrq dh ek¡x esa Hkh mlh vuqikr esa laoqQpu ;k foLrkj gksrk gS rc ek¡x dh yksp ,d leku
          jgsxhA ijarq ;fn izfr'kr fofèk dk iz;ksx fd;k tkrk gS rc mijksDr voLFkkvksa essa ek¡x dh yksp fofHkUu gksxhA
                                                                       3
          igys esa ;g bdkbZ ls vfèkd (6) ;k ykspnkj gksxh vkSj nwljs esa ;g bdkbZ ls de    ;k csykspnkj gksxhA
                                                                       4
          vr% pki yksp fofèk] izfr'kr yksp fofèk dh rqyuk esa] vfèkd okLrfod rFkk fuHkZj fofèk gSA
          ek¡x dh pki yksp rFkk fcanq yksp osQ chp varj Hkh gSA pki yksp] ek¡x oØ osQ ,d fo'ks"k Hkkx ij yksp
          dk vkSlr ewY; gS] tcfd fcanq yksp] ek¡x oØ osQ ,d fo'ks"k fcanq ij yksp dk ewY; gSA ckeksy
          osQ 'kCnksa esa] ^^ek¡x dh ¯cnq yksp ek¡x oØ osQ izR;sd fcanq ls lacafèkr èkkj.kk gS] ijarq ,sls fdlh Hkh
          fcanq ij dher (∆P = 0) esa vFkok ek=kk esa dksbZ ifjorZu ugha (∆∆ ∆∆ ∆Q = 0) gksrkA vr% ge facanq yksp
          dks pki dh lhek eku ysrs gSa D;ksafd tSls&tSls pki dks NksVs ls NksVk fd;k tkrk gS og fcanq cu
          tkrk gSA** (Point elastictiy of demand is the corresponding concept, for each point on
          the demand curve. But at any such point there is no change in price (∆P = 0) or in
          quantity (∆Q = 0). We, therefore, take point elasticity to be the limit of the arc
          elasticity figure as the arc is made smaller and smaller.          —Baumol

          5- vk; fofèk (Revenue Method)
          ek¡x dh yksp Kkr djus dh ik¡poha fofèk vk; fofèk gSA ,d iQeZ dks mlosQ mRiknu dh fcØh ls tks fcØh
          ewY; izkIr gksrk gS] mls iQeZ dh vk; (Revenue) dgk tkrk gSA eku yhft, 10 ehVj diM+k cspdj ,d
          iQeZ dks 50 #i, izkIr gksrs gSaA bu 50 #i;ksa dks iQeZ dh oqQy vk; (Total Revenue) dgk tk,xkA ;fn
          oqQy vk; dks mRiknu dh csph xbZ bdkb;ksa dh ek=kk ls Hkkx ns fn;k tk, rks tks HktuiQy vk,xk mls vkSlr
                                                                                 50
          vk; (Average Revenue) vFkok izfr bdkbZ dher dgk tk,xkA mijksDr iQeZ dh vkSlr vk;   = 5
                                                                                 10
          #i, izfr ehVj gksxhA vr% vkSlr vk; vkSj dher lekukFkZd 'kCn gSaA fdlh oLrq dh ,d vfèkd bdkbZ
          cspus ls oqQy vk; esa tks varj vkrk gS mls lhekar vk; (Marginal Revenues) dgrs gSaA ;fn 11 ehVj
          diM+k csp dj iQeZ dks 54 #i, izkIr gksrs gSa rks bldk vFkZ gS fd 11osa ehVj diM+s dh lhekar vk; 54
          #i, –50 #i, = 4 #i, gksxhA ,d iQeZ dh vkSlr vk; oØ dks ek¡x oØ Hkh dgk tkrk gSA vkSSlr vk;
                                                                                   A
          rFkk lhekar vk; osQ }kjk ek¡x dh yksp dks fuEufyf[kr lw=k }kjk ekik tk ldrk gSµ(;gk¡ E  =
                                                                             d
                                                                                 A −  M
          ek¡x dh dher yksp_ A = vkSlr vk;_ M = lhekar vk;)
          ek¡x dh yksp osQ bl lw=k dks fp=k 6-21 dh lgk;rk ls Li"V fd;k tk ldrk gSA bl fp=k esa OY-v{k ij
          vk; rFkk OX-v{k ij oLrq dh ek=kk izdV dh xbZ gSA AB vkSlr vk; (AR) ;k ek¡x oozQ gS vkSj AN



                                           LOVELY PROFESSIONAL UNIVERSITY                                   137
   138   139   140   141   142   143   144   145   146   147   148