Page 139 - DECO403_MATHEMATICS_FOR_ECONOMISTS_HINDI
P. 139

VED1
          E\L-LOVELY-H\math7-1 IInd 21-10-11 IIIrd  24-1-12 IVth 21-4-12 Vth 20-8-12 VIth 10-9-12


                                                                                bdkbZ    le:i iQyu ,oa ;wylZ izes;




          (c) iw¡th dh mRiknu yksp                                                                 uksV

                                        K ∂ Q   K
                                                     α
                                                           L
                                     (        =   · A K  α− 1 β
                                       Q ∂ K    Q
                                                                    L
                                          K                  A K  α− 1 β
                                                              α
                                                α
                                                      L =
                                     (         AK  α− 1 β  α           =  α
                                           αβ
                                                                    L
                                        AK L                 A K  α − 1 β
                                                              α
          Je dh mRiknu yksp
                                          ∂
                                        LQ     L       αβ − 1
                                                    β
                                     (       =   · AK L
                                       Q ∂ L   Q
                                          L
                                                    α
                                     (         A β  K L β  −  1
                                           αβ
                                        AKL
                                            β
                                     (            AK  α  L β  −  1  =β
                                        AK  α  L β  −  1
          bl izdkj α rFkk β nh gqbZ mRiknu iQyu esa iw¡th o Je dh mRiknu dh yksp dks iznf'kZr djrs gSaA
          Lo&ewY;kadu
          2- cgqfodYih; iz'u  - .   .  /      %  
   
 µ
            6-  dkWc&MksXyl mRiknu iQyu osQ izfriknu dk Js; fdls fn;k tkrk gS\
                     lh-MCY;w- dkWc rFkk Mh-,p- MksXyl      dkWc vkSj ek'kZy

                     MksXyl ,oa vjLrq                    mijksDr lHkh
            7-  mRiknu iQyu gSµ
                               α
                                                                  β
                                                               α
                            β
                       ( $      !                          ( $  "  !
                                                            β
                          α
                       (      β                          $   !
            8-  lh-bZ-,l- osQ lhekUr mRikn lnSo gksrs gSaµ
                     ½.kkRed         ?kukRed          /ukRed            buesa ls dksbZ ugha
          7-5 lkjka'k


             • vFkZ'kkL=k eas vf/drj iz;ksx gksus okys ,d fo'ks"k izdkj osQ iQyu dks le:i iQyu dgrs gSaA
             • ;wylZ izes; crkrh gS fd tc lHkh mRifÙk osQ lk/u ,d fn;s gq, vuqikr esa c<+k;s tkrs gSa rks
                ifj.kkeLo:i mRiknu Hkh mlh vuqikr esa c<+ tk;sxk] ;fn izR;sd mRifÙk osQ lk/u dks mldh lhekUr
                mRikndrk osQ ewY; osQ cjkcj iqjLdkj fn;k tkrk gS rFkk oqQy mRiknu iw.kZ:i ls ifjlekIr gks tkrk
                gSA
             • ;wylZ izes; dk vkfFkZd {ks=k esa] fo'ks"kdj forj.k {ks=k esa fo'ks"k egÙoiw.kZ LFkku gSA mRiknu fofHkUu
                lk/uksa osQ la;qDr la;ksx ls gksrk gSA
   134   135   136   137   138   139   140   141   142   143   144