Page 90 - DECO403_MATHEMATICS_FOR_ECONOMISTS_HINDI
P. 90

VED1
          E\L-LOVELY-H\math3-1 IInd 6-8-11 IIIrd  24-1-12 IVth 21-4-12 Vth 20-8-12 VIth  10-9-12



          vFkZ'kkfL=k;ksa dk xf.kr




                   uksV                d     1 
                                       dx    x      dk eku D;k gksxk\
                                       () 
                                           1  − 3               1  − 3              1  3            1  3
                                        
    x  2              −  x  2             −  x  2       
    x 2
                                           2                    2                   2               2

                                           dk   osQ lkis{k vody&xq.kkad fdruk gksxk\
                                        
 #                                       +              
 +

                                       d
                                         (e x ) = ........
                                      dx
                                                                                   1
                                            
  	                                   e x
                                       d
                                         log x = ........ log e
                                                         a
                                            a
                                      dx
                                           1
                                        
                                           *            
   *
                                           x

                                3-12 lkjka'k  % ""



                                  •    lim 0    y δ x δ   dks iQyu   dk   osQ lkis{k vody&xq.kkad         
              
       4  /
                                       x δ→
                                        
"          ;k vodyt      	   	   dgrs gSaA LorU=k pj osQ fdlh izdkj osQ lUnsg ls cpus
                                                                                            y δ   d         dy
                                      osQ fy, dgk tkrk gS fd iQyu dk   osQ lkis{k vody&xq.kkad  lim     dks        ;k
                                                                                      x δ→ 0 δ x  dx        dx
                                      fy[krs gSaA bl izdkj lhek Kkr djus dh bl fozQ;k dks vodyu djuk dgrs gSa ;k fdlh iQyu osQ
                                      vody&xq.kkad Kkr djus dh lafozQ;k dks vodyu         
      
  dgrs gSaA
                                                                                                            x
                                                                                          lim    ( + f x     ) − x  f ( )
                                  • ;fn   dk dksbZ iQyu      vkSj   ; δ  dk ogh iQyu     ; δ   gks rks
                                                                                            x  → 0     x

                                      dk lhekUr eku    ,   
* 	     9   osQ lkis{k      dk vody&xq.kkad ;k vodyu
                                               
   dgykrk gSA

                                       d         d         d
                                  •      D    E :         N
                                      dx         dx       dx
                                  • vr% nks iQyuksa osQ ;ksx ;k vUrj dk vody&xq.kkad muosQ vody&xq.kkad osQ ;ksx ;k vUrj osQ cjkcj
                                      gksrk gSA
                                       d
                                  •       	   :

                                      dx
                                       d
                                  •      
  : 
    * 
  vFkkZr~ nks iQyuksa osQ HkkxiQy dk vody&xq.kkad        7


                                      dx
   85   86   87   88   89   90   91   92   93   94   95