Page 91 - DECO403_MATHEMATICS_FOR_ECONOMISTS_HINDI
P. 91

VED1
          E\L-LOVELY-H\math3-1 IInd 21-10-11 IIIrd  24-1-12 IVth 21-4-12 Vth 20-8-12 VIth 10-9-12


                                                                                                bdkbZ    vodyu




          3-13 'kCndks'k  #  )   
                                                                 uksV

             • vody&xq.kkad         
     7        
  % vodytA

             • o`f¼  *  4 / %	c<+ksrjh

          3-14 vH;kl&iz'u    	  )


                 d      2
                    −
                         )
            1-      (6x  dk eku fudkysaA                                     (mÙkj % 8   )
                 dx
                 d     6
                          x

            2-      (5x +  2 )  dk eku fudkysaA                           (mÙkj %  -  ;  )
                 dx
                           d   x   x
            3-  fl¼ djsa fd   a =  a  log a -
                                        e
                           dx
                                                                                6   1  − 1
            4-  6logx −   x −  7  dk vody xq.kkad Kkr djsaA              (mÙkj %   −  x  2
                                                                                x   2

                         x                    dy
                    y =      rks lkfcr djsa fd  x  =  y (1 −
            5-  ;fn     x +  5                dx         ) y A


          mÙkj % Lo&ewY;kadu

             1-      vodyu          xq.kuiQy        
            # 8          #
             2-


          3-15 lanHkZ iqLrosaQ      $        
!





             iqLrdsa     1- eSFksesfVDl iQkWj bdksukWfeDl µ dkmQfUly iQkWj bdksukWfed ,tqosQ'kuA
                        2- xf.krh; vFkZ'kkL=k µ ekbdy gSjhlu] iSfVªd okYMjuA

                        3- eSFksesfVDl iQkWj bdksukWfeLV µ fleksu vkSj Cywe µ ohok ifCyosQ'kuA
                         4- eSFksesfVDl iQkWj bdksukWfeLV µ esgrk vkSj enukuh µ lqYrku pUn ,.M lUlA
                         5- eSFksesfVDl iQkWj bdksukWfeDl µ ekydkWe] fudksyl] ;w-lh- yUnuA

                         6- eSFksesfVDl iQkWj bdksukWfeDl µ dkyZ ih- fleksu] ykWjsUl CyweA
                         7- ,lsfU'k;y eSFksesfVDl iQkWj bdksukWfeDl µ uWV lsMsLVj] ihVj gkeUM] izSfUVl gkWy ifCy-

                         8- eSFksesfVDl iQkWj bdksukWfeLV µ ;kekus µ izSfUVl gkWy bfUM;kA
                         9- eSFksesfVDl iQkWj bdksukWfeDl ,.M iQkbukUl µ ekfVZu ukeZuA
   86   87   88   89   90   91   92   93   94   95   96