Page 229 - DECO403_MATHEMATICS_FOR_ECONOMISTS_PUNJABI
P. 229

VED1
          E L-LOVELY-H math14-1     IInd  21-10-11     IIIrd  24-1-12     IVth  21-4-12     Vth  10-9-12






                                                                        fJekJh^14 L :'r (i'V) d/ o{g ftZu nB[ebB

                                                  +
                ∴             ∫  dx    =  1  log  6 (x + 1)  + c.                                 T[Zso   B'N
                                                  −
                               −
                                   −
                             52xx    2  2 6      6 (x + 1)
                T[dkjoD 4H  ∫       3x       dx '  dk wkB gsk eo'.
                             (x  −1)(x  − 2)(x  − 3)
                             3  x       3  1        1    9   1
                jZb L                 =        − 6.     +  .      nzfPe fGzBK ftZu yzvs eoB
                       (x − 1)(x − 2)(x −  3)  2 (x − 1)  (x −  2)  2 (x − 3)
                          3x
                s/ ∫ (x − 1)(x − 2)(x − 3) dx

                                        3   dx      dx   9  dx
                                            =  ∫  − 6 ∫  +  ∫
                                        2     1 x −  2 x −  2  3 x −

                                        3                       9
                                            =  log (x − 1) − 6log (x − 2) +  log (x − 3) + c.             T[Zso
                                        2                       2
                T[dkjoD 5H  ∫   dx     dk wkB gsk eo'.
                               2
                             2 x +x  −1
                            1           1
                jZb L ∵          =
                         2  2  x  1x +−  (x + 1)(2x − 1)
                fJ; soQK wzB fbU
                                              1) Bx +
                     1    =  A  +  B  =  A (2x −+  (  1)
                 2  2  x  1x +−  x + 1 2x − 1  (x + 1)(2x − 1)

                ∴   A (2x – 1) + B (x + 1) = 1
                iK    (2A + B) x + (B – A) = 1
                d'jK gZyK d/ r[DkeK dh s[bBk eoB s/






                ∴





                                                                                                        T[Zso

                T[dkjoD 6H  ∫  x  dx  3   dk wkB gsk eo'.
                              − x

                         1       1          1
                jZb L        =        =
                         −
                                               +
                       xx  3  x −   2  )  x −  )(1 x )
                               (1 x
                                         (1 x



                                           LOVELY PROFESSIONAL UNIVERSITY                                               223
   224   225   226   227   228   229   230   231   232   233   234