Page 229 - DECO403_MATHEMATICS_FOR_ECONOMISTS_PUNJABI
P. 229
VED1
E L-LOVELY-H math14-1 IInd 21-10-11 IIIrd 24-1-12 IVth 21-4-12 Vth 10-9-12
fJekJh^14 L :'r (i'V) d/ o{g ftZu nB[ebB
+
∴ ∫ dx = 1 log 6 (x + 1) + c. T[Zso B'N
−
−
−
52xx 2 2 6 6 (x + 1)
T[dkjoD 4H ∫ 3x dx ' dk wkB gsk eo'.
(x −1)(x − 2)(x − 3)
3 x 3 1 1 9 1
jZb L = − 6. + . nzfPe fGzBK ftZu yzvs eoB
(x − 1)(x − 2)(x − 3) 2 (x − 1) (x − 2) 2 (x − 3)
3x
s/ ∫ (x − 1)(x − 2)(x − 3) dx
3 dx dx 9 dx
= ∫ − 6 ∫ + ∫
2 1 x − 2 x − 2 3 x −
3 9
= log (x − 1) − 6log (x − 2) + log (x − 3) + c. T[Zso
2 2
T[dkjoD 5H ∫ dx dk wkB gsk eo'.
2
2 x +x −1
1 1
jZb L ∵ =
2 2 x 1x +− (x + 1)(2x − 1)
fJ; soQK wzB fbU
1) Bx +
1 = A + B = A (2x −+ ( 1)
2 2 x 1x +− x + 1 2x − 1 (x + 1)(2x − 1)
∴ A (2x – 1) + B (x + 1) = 1
iK (2A + B) x + (B – A) = 1
d'jK gZyK d/ r[DkeK dh s[bBk eoB s/
∴
T[Zso
T[dkjoD 6H ∫ x dx 3 dk wkB gsk eo'.
− x
1 1 1
jZb L = =
−
+
xx 3 x − 2 ) x − )(1 x )
(1 x
(1 x
LOVELY PROFESSIONAL UNIVERSITY 223