Page 245 - DECO403_MATHEMATICS_FOR_ECONOMISTS_PUNJABI
P. 245

VED1
          E L-LOVELY-H math15-1     IInd  21-10-11     IIIrd  24-1-12     IVth  21-4-12     Vth  20-8-12     Vth  10-9-12






                                                                                    fJekJh^15 L fBPfus nB[ebB

                                                                                                  B'N











                ;t?^w[bKeD (Self Assessment)

                1H ykbh ;EkBK dh g{osh eo' (Fill in the blanks)^
                   1H  id'A fe;h cbB dk nB[ebB fe;/ d' fBPfus ;hwktK d/ bJh gsk ehsk iKdk j? sK T[;B{z
                       HHHHHHHHHH efjzd/ jB.
                   2H  fe;h fBPfus nB[ebB dk wkB g{oh soQK HHHHHHHHHHHHHHH j[zdk j?.
                   3H  nfBPfus nB[ebB dh soQK edh^edh fBPfus nB[ebB ftZu th uo B{z pdbBk HHHHHHHHHHH
                       j' iKdk j?.
                   4H  fBPfus nB[ebB d/ wkB s/ nB[ebB HHHHHHHHHHHHHH dk e'Jh gqGkt BjhA g?Adk j?.
                   5H  ;zfynk a fijVh nB[ebB fuzBQ d/ fBZu/ fbyh iKdh j?. T[j nB[ebB dh HHHHHHHHHHH ejkT[Adh
                       j?.

                15H4 fBPfus nB[ebB d/ ;XkoD r[D
                     (General Properties of Definite Integrals)

                        b           b
                                      ()
                r[D 1H   f x  dx = −  f x  dx.
                          ()
                       ∫ a         ∫ a
                gqwkD (Proof)L


                ∴             yZpk gZy


                              ;Zik gZy



                ∴

                        b         b
                           x
                r[D 2H   f  ( ) dx =  f  () dt.
                                      t
                       ∫ a       ∫ a
                gqwkD (Proof)L   yZpk gZy


                              ;Zik gZy



                                           LOVELY PROFESSIONAL UNIVERSITY                                               239
   240   241   242   243   244   245   246   247   248   249   250