Page 245 - DECO403_MATHEMATICS_FOR_ECONOMISTS_PUNJABI
P. 245
VED1
E L-LOVELY-H math15-1 IInd 21-10-11 IIIrd 24-1-12 IVth 21-4-12 Vth 20-8-12 Vth 10-9-12
fJekJh^15 L fBPfus nB[ebB
B'N
;t?^w[bKeD (Self Assessment)
1H ykbh ;EkBK dh g{osh eo' (Fill in the blanks)^
1H id'A fe;h cbB dk nB[ebB fe;/ d' fBPfus ;hwktK d/ bJh gsk ehsk iKdk j? sK T[;B{z
HHHHHHHHHH efjzd/ jB.
2H fe;h fBPfus nB[ebB dk wkB g{oh soQK HHHHHHHHHHHHHHH j[zdk j?.
3H nfBPfus nB[ebB dh soQK edh^edh fBPfus nB[ebB ftZu th uo B{z pdbBk HHHHHHHHHHH
j' iKdk j?.
4H fBPfus nB[ebB d/ wkB s/ nB[ebB HHHHHHHHHHHHHH dk e'Jh gqGkt BjhA g?Adk j?.
5H ;zfynk a fijVh nB[ebB fuzBQ d/ fBZu/ fbyh iKdh j?. T[j nB[ebB dh HHHHHHHHHHH ejkT[Adh
j?.
15H4 fBPfus nB[ebB d/ ;XkoD r[D
(General Properties of Definite Integrals)
b b
()
r[D 1H f x dx = − f x dx.
()
∫ a ∫ a
gqwkD (Proof)L
∴ yZpk gZy
;Zik gZy
∴
b b
x
r[D 2H f ( ) dx = f () dt.
t
∫ a ∫ a
gqwkD (Proof)L yZpk gZy
;Zik gZy
LOVELY PROFESSIONAL UNIVERSITY 239