Page 246 - DECO403_MATHEMATICS_FOR_ECONOMISTS_PUNJABI
P. 246

VED1
          E L-LOVELY-H math15-1     IInd  6-8-11     IIIrd  24-1-12     IVth  21-4-12     Vth  20-8-12     Vth  10-9-12





           noEPk;soh dk rfDs

                     B'N
                               ∴

                                       b         c         b
                               r[D 3H   f  () dx =  f  () dx +  f () dx, id'Afe a < c < bH
                                                    x
                                          x
                                                              x
                                      ∫ a       ∫ a       ∫ c



                                          yZpk gZy


                                          ;Zik gZy










                                       a         a
                               r[D 4H   f x  dx =  f a  − x  dx .
                                                        )
                                         ()
                                                   (
                                      ∫ 0       ∫ 0
                               gqwkD (Proof)L wzB fbU a – x = t   ∴∴   –dx = dt iK dx = – dt
                               ns/ id'A x = 0, T[d'A t = a ns/ id'A x = a, T[d'A t = 0
                                                         −
                                                                       −
                                                                          )
                                                                    t
                                                                                  t

                               ∴             ;Zik gZy &  0 ∫  ( f a x ) dx =  a ∫ 0a  f () ( dt =−  a ∫ 0  f  () dt
                                                        =  0 ∫ a  f  () dt                                            (r[D 1 Bkb)
                                                        t
                                                        =  0 ∫ a  f  () dx                                           (r[D 2 Bkb)
                                                        x
                                                       & yZpk gZy.
                                       a
                                                0
                               r[D 5H   f  () dx = , i/eo f (x), x dk Nke cbB (odd function) j?.
                                          x
                                      ∫ -a
                               Gkt               f (–x) = – f (x)
                                          a           a
                                             a ∫  f  () dx =  2  0 ∫  f () dx
                                                         x
                                              x
                                          −
                               i/eo f (x), x dk fi;s cbB (even function) j? Gkt f (–x) = f (x).
                                             a         0          a
                               gqwkD (Proof)L  a ∫  f () dx =  a ∫  f  () dx +  0 ∫  f () dx                                   ....(i)
                                                           x
                                                x
                                                                     x
                                            −          −
                                                                                             ∵ – a < 0 < a
                                            0          0
                                                             −
                                                          −

                                                                ),
                                                x
                                                           t
                               j[D              a ∫  f ( ) dx =  a ∫  f  ( ) ( dt                   [x = – t  ⇒  dx = – dt oZyD s/]
                                            −
                                                          =−  a ∫  0  f  () dt
                                                              −
                                                           −
                                                            t



           240                                             LOVELY PROFESSIONAL UNIVERSITY
   241   242   243   244   245   246   247   248   249   250   251