Page 247 - DECO403_MATHEMATICS_FOR_ECONOMISTS_PUNJABI
P. 247

VED1
          E L-LOVELY-H math15-1     IInd  21-10-11     IIIrd  24-1-12     IVth  21-4-12     Vth  20-8-12     Vth  10-9-12






                                                                                    fJekJh^15 L fBPfus nB[ebB

                                           −
                                           =  0 ∫ a  f () dt                                                (r[D 1)   B'N
                                            t
                                           =  0 ∫ a  ( f −  ) x  dx                                               (r[D 2)

                ;fEsh IL i/eo f (x), x dk NKe cbB (odd function) j?.
                T[d'A                 f (–x) = – f (x)                                            (gfoGkPk Bkb)

                             0           a
                                a ∫  f  () dx =−  0 ∫  f  () dx
                                            x
                                 x
                             −
                fJ; soQK ;wheoD (i) Bkb,
                             a           a         a
                                a ∫  f  () dx =−  f  () dx + ∫ 0 ∫  f  () dx =  0.
                                            x
                                                      x
                                 x
                             −           0
                ;fEsh IIL i/eo f (x), x dk fi;s cbB (even function) j?.
                T[d'A                 f (–x) = f (x)                                                                          (gfoGkPk Bkb)
                             0          a
                                 x
                ∴              a ∫  f () dx =  0 ∫  f  () dx
                                           x
                             −
                fJ; soQK (i) Bkb,
                             a          a         a
                                f  () dx =  0 a ∫  f  () dx + ∫ 0 ∫  f  () dx
                                                     x
                                           x
                                 x
                             −
                                          2=  0 ∫ a  f  () dx.
                                            x

                                           jZb ;fjs T[dkjoD

                T[dkjoD 1L f;ZX eo' fe
                           À/2         À/2    À  
                               2
                             sin x dx  =  sin 2    − x  dx.
                                                  
                          ∫ 0         ∫ 0      2  




                                                                                                        HHHH(1)












                                                                                                       HHHH(2)

                ∴             yZpk gZy & ;Zik gZy.

                                           LOVELY PROFESSIONAL UNIVERSITY                                               241
   242   243   244   245   246   247   248   249   250   251   252