Page 286 - DECO403_MATHEMATICS_FOR_ECONOMISTS_PUNJABI
P. 286

VED1
          E L-LOVELY-H math19-1     IInd  6-8-11     IIIrd  24-1-12     IVth  21-4-12     VIth  10-9-12





           noEPk;soh dk rfDs

                     B'N       T[dkjoD ti'A, i/eo
                                                                    15 



                                                  13 7              
                                                  A =      T[d'A  A′ =   32
                                                                       


                                                  52 4             74 

                               ;gPN  j? fe ;zxNe  A ij ,  fijV/ w?fNqe;  A  dh  ithA gzesh  ns/  jt/A  ;szG ftZu ;h, gfotos
                               w?fNqe;  A′  dh jthA gzesh ns/ it/A ;szG T[Zs/ oj/rk. fJ; bJh i/eo
                                                                       ′
                                                            A = [a ij ] ns/  A′  = [a ij ]  ⇒    a a=  ij
                                                                      ij
                               B'N^i/eo n;hA  A′  dk gfotos btKr/, sK fco s'A A gqkgs j' ikJ/rk.
                                                   ) =
                               ∴             ()A′′ =  (A T T  [A tt ] =  A
                                                 ′;
                               fJ;h soQK [KA  ′ ]= KA  fJZE/ K fJZe nkfdP okPh (Scalar) j?.
                               gqw/: 1^ i/eo A ns/ B d'B'A m × n eqw d/ w?fNqe; jB, T[d'A
                                           (  +  )AB ′ =  A′ + B′

                               T[gZsh^;kB{z gsk j? fe A ns/ B :'r d/ nB[ebB j'Dr/ i/eo d'B'A fJZe jh eqw m × n d/ j'D.
                               fJ; bJh wzB fbU.

                               A = [a ij ] ns/ B = [b ij ] T[d'A, C = A + B = [c ij ], fiZE/, c ji  = a ji  + b ij
                               j[D  A′ = [  ]a  =  [ B′ =  ]b  , fiZE/ a ji  = a ij  ns/ b ji  = b ij
                                        ji       ji
                                                         =
                                                                  =
                                                                       +
                                            (A B+  )′ = C′ = [c  ][a +  b  ][a  ] [b  ] =  A′ +  B. ′
                                                       ji   ij  ij   ji   ji

                               19H2 d' w?fNqe; d/ r[DB d/ gfotos
                                    (Transpose of Product of Two Matrices)
                               gqw/: 2^i/eo w?fNqe; A ns/ B r[DB d/ bJh nB[ebB jB, sK AB dk gfotos T[seqw ftZu
                               gfotosK d/ r[DBcb d/ pokpo j'J/rk Gkt i/eo A ns/ B eqw nB[;ko m × n ns/ n × p eqw
                               d/ jB, T[d'A  (  )AB ′ =  B A ′′
                               T[gZsh^AB dk eqw m × p j?, sK  (  )AB ′  eqw p × m dk j't/rk,  B′  dk eqw p × n ns/  A′  dk
                                                                                               ′
                               eqw n × m dk j?, fJ; bJh  BA ′′ , p × m eqw dk j'J/rk. Gkt d'B'A  (  )AB ′  ns/  B  .A′ pokpo
                               eqw d/ jB.
                               wzB fbU T[d'A A = [a ij ], B = [b jk ], T[d'A

                               (   )AB ′  dk (k – i)tK ;zxNe & (AB) dk (i – k)tK ;zxNe
                                                              n
                                                                   = ∑ ab
                                                                  jk
                                                                ij
                                                             j= 1
                                                                   ′
                               ()′ = (b A′ =  (a  )  fiZE/  b  ′  =  b  ′ ,a  ′  =  a
                                B
                                       )
                                      kj      ji      jk  jk  ji  ij
                                                              n
                               fJ; soQK  BA ′′  dk (k – i)tK ;zxNe  = ∑  ab
                                                                 jk ij
                                                              j= 1
                                                              n
                                                                jk ij ∑
                                                                   = ∑ a b =  n  ab
                                                                         ij
                                                                           jk
                                                             j= 1     j= 1
                               Gkt  BA ′ dk (k – i)tK ;zxNe &  (  )AB ′  dk (k – i)tK ;zxNe


           280                                             LOVELY PROFESSIONAL UNIVERSITY
   281   282   283   284   285   286   287   288   289   290   291