Page 290 - DECO403_MATHEMATICS_FOR_ECONOMISTS_PUNJABI
P. 290

VED1
          E L-LOVELY-H math19-1     IInd  6-8-11     IIIrd  24-1-12     IVth  21-4-12     VIth  10-9-12





           noEPk;soh dk rfDs

                                                                                                       -1
                     B'N       fNZgDh^(i) i/eo A, B, C,....,AM ;wkB eqw d/ T[bN w?fNqe; jB, T[d'A (A.B.C.....M) = M
                                     -1
                                  -1
                                        -1
                               ....C  B  A
                               (ii) i/eo A fB:fws tor^w?fNqe; j?, T[d'A AB = 0  ⇒  B = 0;
                               i/eo B fB:fws tor^w?fNqe; j?, T[d'A AB = 0  ⇒  A = 0
                               (iii) w?fNqe; ftZu gfotos ns/ T[bN fefonk eqw ftfBw/: (Commutative) j?.

                                                   ( )A′  − 1  =  (A − 11
                                                         ).
                               19H5 bzpe w?fNqe; (Orthogonal Matrix)

                                      ′
                               i/eo  AA = I  sK A B{z bzpe w?fNqe; efjzd/ jB.
                               n;t?fJS[Ze Involuntary w?fNqe;
                                                       2
                               i/eo A tor w?fNqe; j? ns/ A  = I (ss;we iK fJekJh), sK A B{z n;t?fJS[Ze (Involuntary)
                               w?fNqe; efjzd/ jB.
                               T[dkjoD L do;kU fe fBwBfbus o{g  d/  2  %  2 w?fNqe;K d/  bJh  r[DB eqw^ftfBw/:
                               jB^



                               jZb L fJZE/




                               ns/


                               ;t?^w[bKeD (Self Assessment)

                               fBwBfbys eEBK ftZu'A ;Zu iK M{m dh gfjukD eo'
                               (State whether the following statements are True or False)^

                                 6H  t:{j A d/ ;zxNeK a ij  d/ ;fj^yzvK C ji  Bkb gqfs;Ekfgs eoe/ t:{j dk gfotos pDk
                                     b?Ad/ jB. fJ; soQK pD/ gfotofss t:{j B{z A dk ;fjyzvi efjzd/ jB.
                                 7H  fe;h T[bN w?fNqe; dk ftgohs ftbZyD BjhA j[zdk j?.

                                 8H  i/eo B fB:fws tor w?fNqe; j?, T[d'A AB = 0  ⇒  A = 0
                                            ′
                                               I
                                 9H  i/eo  AA =  sK A B{z Iho' w?fNqe; efjzd/ jB.
                                                             2
                                 10H  i/eo tor w?fNqe; A j? ns/ A  = I, sK A B{z n;t?fJS[Ze w?fNqe; efjzd/ jB.

                               19H6 ;koKP (Summary)
                                 •   i/eo A fJZe m × n eqw dk w?fNqe; j?, T[d'A fJ;dhnK gzeshnK ns/ ;szGK B{z nkg;
                                     ftZu pdbD Bkb fijV/ n × m w?fNqe; gqkgs j't/rk, T[;B{z A dk gfotos ejKr/ ns/
                                                 T
                                            t
                                      A′  iK A  iK A  Bkb do;ktKr/.
                                 •   w?fNqe;  A  ns/  B  r[DB d/ bJh nB[ebB jB, sK  AB  dk gfotos T[seqw ftZu
                                     gfotosK d/ r[DBcb d/ pokpo j't/rk Gkt i/eo A ns/ B eqw nB[;ko m × n ns/
                                     n×p eqw d/ jB, T[d'A  (  )AB ′ =  ′ . B  A′ H

           284                                             LOVELY PROFESSIONAL UNIVERSITY
   285   286   287   288   289   290   291   292   293   294   295