Page 32 - DECO403_MATHEMATICS_FOR_ECONOMISTS_PUNJABI
P. 32

noEPk;soh dk rfDs

                     B'N       d'^bx[rDe cbB dk ;XkoD ;wheoD j/m nB[;ko j[zdk j?^














                                          x
                               (id'A fe A = e )
                               fJ; cbB dhnK w[Zy ftP/PsktK fBwB fbys jB^

                                                     A
                                (i)  i/eo β & 1 T[d'A  y =   iK xy = A
                                                     x
                               (T[d'A fJj nkfJs gotb j' ikJ/rk)
                               (ii)  i/eo β < 1 j? sK x d/ tXD d/ Bkb y tZXdh do Bkb tZXdk j?.
                              (iii)  i/eo 0 <  β < 1 j? sK x d/ tXD d/ Bkb y xNdh do s'A tZXdk j?.

                               (iv)  i/eo β < 0 j? sK x tXD d/ Bkb y xNdk j?.
                               fJZE/ fJj T[b/y:'r j? fe xBkswe xks T[sgkdB cbB ns/ foDkswe xks wzr ftPb/PD ftZu
                               T[fus j[zdhnK jB. fJjBK dh gqw[Zy ftP/Psk fJj j? fe xksKe ;fEo b'u B{z do;kT[Ad/ jB.
                               (;) xksh cbB (Exponential Function) L xksh cbB th noEPk;so ftZu pj[s T[g:'rh j?.
                               fJ;  cbB  ftZu  y, x  dk  cbB  Bk  j'  e/  x  d/  xksh  dk  cbB  j[zdk  j?.  fJ;B{z  fBwB  fbys
                               ;wheoDK d[nkok do;kfJnk ik ;edk j?^
                                                            x
                                                                 y = log e x, y = e , y = e sinx
                               nkfd
                                                         x
                               i/eo ;kvh xksh ;wheoD y = b  j't/, id'A fe
                               b >  1  j? sK n;hA fJ;dk  teo  fuZso d/
                               nB[;ko j't/rk^
                                                        y
                               wzfBnk xksh cbB  x  =  A  B   j? sK fJ;
                               ;wheoD  B{z  bx[rDe o{g ftZu j/m nB[;ko
                               do;k ;edk jK^
                                                                   log x = log A + y log B
                               ∴                             y log B = log x – log A
                                                        log x  log A
                               iK                         y =  −
                                                        log B  log B
                                           1           log A
                               wzfBnk         =β  ns/  −    =α  T[d'A
                                         log B         log B
                                                                         y =   α   + β log x, i' fe
                               ;kvk bx[rDe cbB jh j?.


           26                                             LOVELY PROFESSIONAL UNIVERSITY
   27   28   29   30   31   32   33   34   35   36   37