Page 37 - DECO403_MATHEMATICS_FOR_ECONOMISTS_PUNJABI
P. 37
VED1
E L-LOVELY-H math2-1 IInd 21-10-11 IIIrd 24-1-12 IVth 21-4-12 Vth 20-8-12 VIth 10-9-12
Pavitar Parkash Singh, Lovely Professional University fJekJh^2 L ;hwk ns/ brkskosk
fJekJh^2L ;hwk ns/ brkskosk B'N
(Limits and Continuity)
ftP/ t;s{ (Contents)
T[d/P (Objectives)
gq;sktBk (Introduction)
2H1 cbB dh ;hwk (Limit of a Function)
2H2 dZyD gZy ns/ tkw gZy ;hwk (Right Hand and Left Hand Limits)
2H3 cbB dh ;hwk dZyD gZy ns/ tkw gZy ;hwk gsk eoB dh fefonk ftXh (Working
Rules for Finding Right Hand Limit and Left Hand Limit)
2H4 ;hwk dk ti{d (Existence of Limit)
2H5 cbB f (x) dh x = a T[Zs/ ;hwk ns/ wkB ftZu nzso (Distinction Between Limit and
Value of a Function f (x) on x = a)
2H6 cbB dk wkB ns/ ;hwk (Value and Limit of a Function)
2H7 ;hwktK T[Zs/ gqw/: (Theorems on Limits)
2H8 cbB dh ;hwk gsk eoB dh ftXh (Method of Finding the Limit of any Function)
2H9 i:kfwsh gfoGkPk (Geometrical Definition)
2H10 fe;h fpzd{ T[Zs/ cbB dh brkskosk (Continuity of a Function at any Point)
2H11 brkskosk dk i:kfwsh noE (Geometrical Meaning of Continuity)
2H12 fe;h fpzd{ T[Zs/ cbB dh brkskosk gsk eoB dh ftXh (Method to Finding Continuity
of a Function at any Point)
2H13 fJZe nzsokb ftZu cbB dh brkskosk (Continuity of a Function in an Interval)
2H14 brksko cbBK dk gqw/: (Theorem on Continuous Functions)
2H15 ;koKP (Summary)
2H16 Ppde'P (Keywords)
2H17 nfGnk; gqPB (Review Questions)
2H18 ;zdoG g[;seK (Further Readings)
T[d/P (Objectives)
fJ; fJekJh d/ nfXn?B s'A pknd ftfdnkoEh :'r j'Dr/L
• cbB dh ;hwk ;zpzXh ;wZf;nktK B{z jZb eoB ftZu n;kBh j't/rh.
• cbB f (x) dh x = a T[Zs/ ;hwk ns/ wkB ftZu nzso ;zpzXh ;wZf;nktK B{z jZb eo ;ed/
jB.
LOVELY PROFESSIONAL UNIVERSITY 31