Page 72 - DECO403_MATHEMATICS_FOR_ECONOMISTS_PUNJABI
P. 72

VED1
          E L-LOVELY-H math3-1     IInd  21-10-11     IIIrd  24-1-12     IVth  21-4-12     Vth  20-8-12     VIth 10-9-12





           noEPk;soh dk rfDs

                     B'N       dk ;hwKs wkB  (limiting  value),  x  d/ ;kg/y  f  (x)  dk fBy/VB^r[DKe  iK fBy/VBk
                               (differential coefficient) ejkT[Adk j?.
                                                                                                      x
                                                                                           dy      df  ()
                                                                                              y′
                               fNZgDh 1H  ;XkoD o{g s'A fBy/VB^r[DKe  (differential  coefficient)  B{z   ,, y,  ,
                                                                                           dx    1  dx
                                d
                                  fx    ′ ( ),D ( ), f ′ nkfd ;ze/sK s'A gqrN eod/ jK.
                                             fx
                                   ( ), f x
                               dx
                               fNZgDh 2H fe;h cbB d/ fBy/VB^r[DKe (differential coefficient) B{z gsk eoB dh ftXh B{z
                               cbB dk fBy/VB eoBk (differentiating the function) efjzd/ jB.
                               fJ; soQk n;hA d/yd/ jK fe fBy/VB dh ftXh ftZu uo gd (steps) j[zd/ jBL
                               gfjbk gd^x B{z x + δx ftZu pdbDk ns/ f (x + δx) gsk eoBk.
                               d{ik gd^ nzso f (x + δx) – f (x) gsk eoBk.
                                                                       ( + ´ ) −
                                                                                ()
                                                                      fx   x   fx
                               fsZik gd^nzso B{z δx Bkb tzvDk ns/ fJ; soQK          gsk eoBk.
                                                                           ´x
                                                                                ( + ´ ) −
                                                                               fx    x   fx
                                                                                          ()
                               u"Ek gd^id'A  δx  Iho' d/ tZb/ nZr/ tZXdk j? T[d'A nB[gks       dh ;hwk gsk
                                                                                     ´x
                               eoBk.
                               fNZgDh^fJZE'A nZr/ x dk tkXk δx d/ ;EkB s/ h fbfynk ikJ/rk sKfe ftfdnkoEh δ ns/ x dh
                               d[ftXk ftZu Bk oj'. fJ; bJh i/eo f (x), x dk e'Jh cbB j? sK
                                                     ( + ) −
                                                    fx   h   fx
                                                              ()
                                                      lim
                                                 h→ 0     h
                               B{z f (x) dk fBy/VB^r[DKe efjzd/ jB. fJj fXnkB ftZu oZyDk ukjhdk j? fe T[go'es ftnzie B{z
                               h dk cbB wzfBnk iKdk j? Gkt h B{z uo wzfBnk iKdk j? ns/ x B{z nuo.

                               3H3 fe;h nuo okPh dk fBy/VB^r[DKe
                                   (Differential Coefficient of a Constant)

                               wzB fbU c e'Jh nuo okPh j?. fJ; bJh fJZE/ f (x) = c j[D x d/ ;ko/ wkBK d/ bJh nuo okPh
                               ftZu e'Jh gfotosB BjhA j' ;edk.








                               fJ; soQK nuo okPh dk fBy/VB^r[DKe Iho' j[zdk j?.

                               3H4 nuo okPh ns/ cbB d/ r[DBcb dk fBy/VB^r[DKe  (Differential
                                   Coefficient of the Product of a Constant and a Function)

                               wzB fbU fe a e'Jh nuo okPh j? ns/ f (x) fdZsk j'fJnk cbB j?, sK




           66                                             LOVELY PROFESSIONAL UNIVERSITY
   67   68   69   70   71   72   73   74   75   76   77