Page 67 - DECO403_MATHEMATICS_FOR_ECONOMISTS_PUNJABI
P. 67

VED1
          E L-LOVELY-H math2-2     IInd  6-8-11     IIIrd  24-1-12     IVth  21-4-12     Vth  20-8-12     VIth 10-9-12






                                                                                  fJekJh^2 L ;hwk ns/ brkskosk

                   •   i/eo fe;h cbB f (x) dh x = a T[Zs/ dZyD gZy ns/ tkw gZy d'B'A ;hwktK Pkfwb ns/ fJZe   B'N
                       ;wkB j'D, sK cbB f (x) dh x = a T[Zs/ ;hwk dk ti{d j[zdk j?.
                                       lim ( )fx =  lim ( ) = (wzB fbU)
                                                fx
                                                     l
                                   x→ a +   x→ a  -
                   •   fJZE/ l cbB dh ;hwk ejkT[Adh j? ns/ fJ;B{z n;hA j/m nB[;ko ftnes eod/ jK^
                                        lim ( )fx = H
                                            l
                                    x→ a
                   •   ;kB{z ;hwk gsk eoB d/ bJh dZyD gZy s/ tkw gZy d'B'A ;hwktK gsk eoBhnK ukjhdhnK
                       jB gozs{ wZXfwe ;so s/ n;hA ;hwk eJh tko f;ZX/ jh gsk eod/ jK.

                   •   nzP ns/ jo d'jK B{z T[;d/ T[GfBPm r[Dbyzv fijV/ Iho' BjhA jB, Bkb Gkr d/Dk s[ozs
                       ;zGt Bk j't/ sK Pq/Dh gq;ko (expansion in series) iK fe;h o{gKsoD (transformation) d/
                       pknd fJj fefonk ;zGt j' ;edh j?.
                   •   i/eo fe;h cbB f (x) dk b/ykfuZso (graph) fyZuD s/ fijVk teo gqkgs j[zdk j?. T[j
                       fJ; soQK j't/ fe fe;h fpzd{ x = a T[Zs/ N[ZNdk (break) Bk j't/, (Gzr Bk j[zdk j't/) sK cbB
                       f (x) T[; fpzd{ T[Zs/ brksko (continuous) ejkT[Adk j?.
                   •   cbB f (x) fe;h fttfos nzsokb (a, b) ftZu brksko fejk iKdk j? i/eo fJj nzsokb
                       (a, b) ftZu x d/ ;ko/ wkBK d/ bJh brksko j?.
                   •   cbB f (x) fe;h pzd nzsokb (closed interval) [a, b] ftZu brksko fejk iKdk j?, i/eo
                        (i)  fJj x d/ T[jBK ;ko/ wkBK d/ bJh brksko j't/ fi;d/ bJh a < x < b
                        (ii)   lim  f (x) = f (a)                                     (iii)  lim  f (x) = f (b)H
                            x→ a+ 0                              x→ b+ 0

                2H16 Ppde'P (Keywords)
                   •   eqw (Sequence)^eqw, f;bf;bk.

                   •   ;ss (Continually)^brksko.

                2H17 nfGnk; gqPB (Review Questions)

                            x − 2ax a 
                            2
                                     2
                                  +
                   1H  lim              dk wkB gsk eo'.                                  (T[Zso L –a)
                                −
                       x→ 0   xa     
                                     x
                                    a − b x     a
                   2H  f;ZX eo' fe  lim   =  loge  H
                                 x→ 0  x        b
                          x − 1
                           3
                   3H  lim      dk wkB gsk eo'.                                             (T[Zso L 3)
                       x→ 1  x − 1
                   4H  cbB                           dh brkskosk dk gqhyD eo'.      (T[Zso L nbrksko)

                   5H  do;kU fe  ()fx =  , x x =  T[Zs/ brksko j?.
                                           0

                T[Zso L ;t?^w[bKeD (Answer : Self Assessment)

                   1H  (i) dZyD gZy ;hwk    (ii) tkw gZyh ;hwk    (iii) ti{d    (iv) ;hwKs    (v) wZXfwe.
                   2H  (i) (a)                          (ii) (b)                         (iii) (c)          (iv) (a)            (v) (c)



                                            LOVELY PROFESSIONAL UNIVERSITY                                               61
   62   63   64   65   66   67   68   69   70   71   72