Page 195 - DECO504_STATISTICAL_METHODS_IN_ECONOMICS_ENGLISH
P. 195

Unit 13: Coefficient of Simple Regression Method


            Example 1: From the following data obtain the two regression equations:                  Notes

                  X            6            2           10            4            8
                  Y            9           11            5            8            7

            Solution:                   Obtaining Regression equations

                   X               Y              XY              X 2             Y 2

                    6              9               54             36              81
                    2             11               22              4             121
                   10              5               50            100              25
                    4              8               32             16              64
                    8              7               56             64              49

                                                                 2
                                                                                 2
                ∑ X  = 30      ∑ Y  = 40       ∑ XY  = 214    ∑ X  = 220      ∑ Y  = 340
            Regression Equation of Y on X
                                               Y = a + b X
                                                c
            To determine the value of a and b the following two normal equations are to be solved:
                                                     a
                                             ∑ Y =  N + b  ∑ X
                                            ∑ XY =  ∑  a   ∑ X + b  X 2

            Substituting the values,
                                               40 = 5a + 30b                        ... (i)
                                              214 = 30a + 220b                      ... (ii)
            Multiplying Eqn. (i) by 6
                                              240 = 30a + 180b                      ... (iii)
                                              214 = 30a + 220b                      ... (iv)
            Subtracting Eqn. (iv) from (iii)
                                            – 40b = + 26
                                                b = – 0.65
            Substituting the value of b in Eqn. (i)
                                               40 = 5a + 30 (– 0.65)
                                               5a = 40 + 19.5 = 59.5
                                                a = 11.9.
            Putting the values of a and b in the equation, the regression line of Y on X is
                                               Y = 11.9 – 0.65 X
            Regression Line of X on Y
                                              X  = a + b Y
                                                c
            and the two normal equations are:
                                             ∑ X =  N + a  b  ∑ Y

                                            ∑ XY =  ∑  a   ∑ Y + b  Y 2             ... (i)
                                               30 = 5a + 40b                        ... (ii)
                                              214 = 40a + 34b
            Multiplying Eqn. (i) by 8
                                              240 = 40a + 320b                      ... (iii)



                                             LOVELY PROFESSIONAL UNIVERSITY                                      189
   190   191   192   193   194   195   196   197   198   199   200