Page 224 - DECO504_STATISTICAL_METHODS_IN_ECONOMICS_HINDI
P. 224

vFkZ'kkL=k esa lkaf[;dh; fof/;k¡




                    uksV                                         214 −  240  26
                                                               =          =−     = – .65
                                                                 220 −  180   40
                                  b dk eku lehdj.k (i) esa j[kus ij
                                                             a = 8 – (– .65 × 6)
                                                               = 8 + 3.9 = 11.9

                                  ;gh ewY; izlkekU; lehdj.k dh lgk;rk ls Kkr fd, x, FksA
                                  ;fn Js.kh esa vadxf.krh; ekè; ls fopyu Kkr fd, x, gSa rks a rFkk b dk ewY; fuEu izdkj Kkr fd;k tk,xkμ
                                                             a =  y −  bx                                     ...(i)
                                                                 Σxy
                                                             b =                                             ...(ii)
                                                                 Σx 2

                                  ;gk¡                       x = (X −  X )
                                                             y = (Y −  Y )

                                  vuqeku dh izeki =kqfVμizrhixeu js[kkvksa ls ,d Js.kh osQ fy, fn, gq, pj&ewY; ls lEc¼ nwljh vkfJr
                                  Js.kh osQ pj&ewY; dk loksZi;qDr vuqeku yxk;k tkrk gSA ;g Kkr djus osQ fy, fd gekjk vuqeku ;FkkZFkrk
                                  osQ ftruk fudV gS] vuqeku dh izeki =kqfV fudkyuh vko';d gksrh gSA
                                  nwljs 'kCnksa esa] vkfJr Js.kh osQ okLrfod ewY;ksa vkSj laxf.kr ;k izo`fÙk&ewY;ksa osQ fopyuksa dk vkSlr eki gh
                                  vuqeku dh izeki =kqfV gSA ;g vLi"V fopj.k ekikad dk oxZewy gksrk gSA vUrj osQoy brukgS fd blesa
                                  okLrfod ewY;ksa osQ laxf.kr izo`fÙk ewY;ksa ls fopyu fy, tkrs gSa] lekurj ekè; ls ughaA
                                  nksuksa izrhixeu js[kkvksa osQ vuqikr dh izeki =kqfV;k¡ fuEufyf[kr lw=kksa }kjk fudkyh tk;saxhμ
                                                        (x −  x  ) 2
                                  x dk y ij     S  =  Σ      c
                                                 xy        N
                                                      Σ(y −  y  ) 2
                                  y dk x ij     S  =         c
                                                 yx       N

                                  ;fn lg&lEcU/ xq.kkad fn;k gks rks izeki =kqfV fudkyus esa bl lw=k dk iz;ksx fd;k tkrk gSμ
                                         Σxy = σ  x  1 −  r 2  Σyx = σ  y  1 −  r 2

                                  x.kuk dh n`f"V ls ;g lw=k ljy ugha gS D;ksafd muosQ fy, x vkSj y osQ laxf.kr ewY; x  vkSj y  ;k ox o oy
                                                                                                        c
                                                                                                  c
                                  Kkr djus iM+rs gSaA vuqeku osQ izeki foHkze lw=kksa ls Hkh izR;{k :i ls vkdfyr fd;s tk ldrs gSaμ
                                                                  Σ a x −
                                                      Σ  2   Σx −  b xy
                                  x dk y ij     S  =         N
                                                 xy
                                                      Σ  2   Σy −  b xy
                                                                  Σ a y −
                                  y dk xy ij    S  =         N
                                                 yx
                                  mgkgj.k (Illustration) 9: fuEu vk¡dM+ksa ls nksuksa jhfr;ksa }kjk izrhixeu js[kkvksa osQ vuqeku dh izeki =kqfV;k¡ Kkr
                                  dhft,μ
                                                x  :      1        2         3         4        5
                                                y  :      2        5         3         8        7





        218                               LOVELY PROFESSIONAL UNIVERSITY
   219   220   221   222   223   224   225   226   227   228   229