Page 227 - DECO504_STATISTICAL_METHODS_IN_ECONOMICS_HINDI
P. 227
bdkbZ—13% lk/kj.k izrhixeu xq.kkad fof/
x = 4 uksV
x dk eku leh- (1) esa j[kus ij]
3x + 2y = 26
3 × 4 + 2y = 26
12 + 2y = 26
2y = 26 – 12
2y = 14
14
y =
2
y = 7
lg&lEcUèk xq.kkad Kkr djus osQ fy, bxy vkSj byx dh x.kuk
byx bxy
3x + 2y =26 12x + 2y =62
2y =– 3x + 26 12x =– 2y + 62
− 3 2
byx = bxy =–
2 12
byx = – 1.5 bxy = .167
r = byx × bxy
= − × 1.5 − .167
= .2505
r = – .50
y dk izeki fopyu = σ
y
2
σ = 25, σ = 5, byx = – 1.5
x x
oy
byx = r
ox
oy
– 1.5 = – 0.5
5
− 1.5
× 5 = oy
− 0.5
oy = 15
mgkgj.k (Illustration) 12: (1) fuEufyf[kr lwpuk ls xf.kr dhft,μ
(i) nksuksa izrhixeu xq.kkad] (ii) lg&lEcUèk xq.kkad] (iii) nksuksa izrhixeu lehdj.kA
2
N = 10 Σx = 350 Σy = 310 Σx = 162 Σy = 222 Σxy = 92
2
(2) fuEufyf[kr vk¡dM+ksa osQ vkèkkj ij y dk x ij vkSj x dk y ij izrhixeu xq.kkad Kkr dhft,μ
Σx = 50 x = 5 Σy = 60 y = 6 Σxy = 350
Variance of x Variance of y = 9
x dk izlj.k = 4 y dk izlj.k = 9
gy (Solution):
(i) x vkSj y osQ fopyu muosQ lekUrj ekè; ls fy, x, gSaμ
y dk x ij izrhixeu xq.kkad
LOVELY PROFESSIONAL UNIVERSITY 221