Page 394 - DECO504_STATISTICAL_METHODS_IN_ECONOMICS_HINDI
P. 394

vFkZ'kkL=k esa lkaf[;dh; fof/;k¡




                    uksV


                                         laxfr] vufHkufr] n{krk vkSj i;kZIrrk ,d vPNs vkx.kd osQ izeq[k vfHky{k.k gSaA


                                  ;Fks"Vrkμ;g Li"V gS fd og vkx.kd fdlh izkpy gsrq ;Fks"V dgyk,xk ;fn mlesa izkpy ls lacafèkr U;kn'kZ
                                  dh leLr egÙoiw.kZ tkudkjh gksA fdlh caVu osQ fy, ;Fks"V vpy dh vko';d 'krZ xq.ku[k.M izes; }kjk
                                  nh tkrh gS] ftlosQ vuqlkj T = f(x) izkpy θ gsrq ;Fks"V gksxk ;fn vkSj osQoy ;fn U;kn'kZ ekuksa dk la;qDr ?kuRo
                                  iQyu L bl izdkj gksrk gS fd
                                                               L =g [f(x)]. h(x)
                                                                  θ
                                  tcfd g [f(x)] dk eku θ vkSj x ij fuHkZj gksrk gS tcfd h(x) dk eku θ ij vkèkkfjr ugha gksrkA
                                        θ
                                  ;Fks"Vrk osQ xq.kèkeZ
                                    (i)  ;fn T izkpy θ gsrq ,d ;Fks"V vkx.kd gS rks Ψ(f), T dk ,d ls ,d iQyu Ψ(f), Ψ(θ) gsrq ;Fks"V
                                        gksrk gSA ;g i;kZIr vkx.kd dk vizlj.k xq.kèkeZ dgykrk gSA
                                   (ii)  ewy U;kn'kZ X = (X , X , ... X ) lnk ,d ;Fks"V vpy gksrk gSA
                                                      1
                                                         2
                                                             n
                                   (iii)  vpy t  = (x , x , ... x ) izkpy θ dk ;Fks"B vkx.kd gksrk gS ;fn vkSj osQoy ;fn laHkkfork iQyu
                                                        n
                                                    2
                                             1
                                                  1
                                        fuEu izdkj ls gSμ
                                                            n
                                                       L = ∏  fx(, )  fx , )
                                                                   θ
                                                                         θ
                                                                      (
                                                                 1
                                                                        i
                                                           i =  1
                                                          = g (t  θ). k(x , x  ...... x )
                                                            1 1
                                                                      2
                                                                            n
                                                                    1
                                  tcfd g (t , θ) vpy t  dk izkf;drk ?kuRo iQyu gS vkSj k(x , x , ...... x ) osQoy U;kn'kZ leqfDr;ksa dk iQyu
                                        1 1        1                           1  2    n
                                  gS] tks θ ij fuHkZj ugha gSA
                                             izkpyu ofjek fdls dgrs gS\
                                  oszQej&jko fo"kerk

                                  oszQej&jko fo"kerk izkpy γ(θ) lacaèkh vkx.kd osQ izlj.k gsrq ,d fuEurj ifjcaèk iznku djrh gSA
                                  ;fn t izkpy θ osQ iQyu γ(θ) dk ,d vufHker vkx.kd gks
                                                         ∂ L     O 2
                                                        M ∂θ N  L(, θ) P Q  2
                                                              x
                                                                      γθ)]
                                                Var (t) ≥   ∂ L   O  =  [( ′
                                                                         θ
                                                        E M ∂θ N  log L P Q  I()
                                                                                     U
                                                                                      2
                                                                 I(θ) = E S M L  ∂ R  θ , )V P O
                                                                               L
                                  vkSj                                   ∂θ T M  log (x
                                                                       N             W P Q
                                         γθ
                                          ′
                                        [( )] 2
                                  ;gk¡ ij       fuEurj ifjcaèk gSA
                                          I ()
                                            θ
        388                               LOVELY PROFESSIONAL UNIVERSITY
   389   390   391   392   393   394   395   396   397   398   399