Page 106 - DEDU504_EDUCATIONAL_MEASUREMENT_AND_EVALUATION_HINDI
P. 106
'kSf{kd ekiu rFkk ewY;kadu
uksV âkbV us inksa osQ vad vkSj ijh{kk£Fk;ksa osQ izkIrkadksa osQ vkèkkj ij f}ekxhZ dkjdh; izk:i cuk;k vkSj mlesa pfjrk
fo'ys"k.k izfofèk dk iz;ksx djosQ fo'oluh;rk xq.kd dks Kkr djus dh fofèk dk fodkl fd;kA fo'oluh;rk Kkr
djus osQ fy, âkbV us tks ewylw=k fn;k og bl izdkj gSμ
V V − V
r = 1 – V r e = e V e r
n
tcfd r = fo'oluh;rk xq.kd
tt
V = ijh{kkFkhZ pfjrk
e
V = 'ks"k osQ ;ksx osQ oxZ dh pfjrk
t
Σ
Σ X 2 ( X ) 2
2
Σd = n i − n N t
e
2
tcfd Σd = ijh{kkFkhZ osQ izkIrkadksa osQ oxksZ dk ;ksx
e
X = izR;sd ijh{kkFkhZ osQ izkIrkad
t
n = ijh{k.k esa inksa dh la[;k
N= U;kn'kZ esa ijh{kkFkhZ dh la[;k
Σ
Σ R 2 ( X ) 2
2
Σd = N i − Nn t
t
tcfd Σd = inksa osQ vadksa osQ oxZ dk ;ksx
i
R = lgh mÙkjksa dh la[;k
i
2
ΣX = lEiw.kZ izkIrkadksa osQ oxksZ dk ;ksx
t
N= U;kn'kZ esa ijh{kk£Fk;ksa dh la[;k
(R )( W )
Σ
Σ
2
ΣX = Σ R + i i Σ W i i
t
W = xyr mÙkjksa dh la[;k
i
2
2
ΣX = ΣX – (Σd + Σd ) i 2
e
i
r
tcfd X = 'ks"k vad
i
pfjrk fo'ys"k.k dh rkfydk
pfjrk dk va'k dh oxks± dk ;ksx oxks± osQ ;ksx dk eè;eku
Ïksr Lora=krk
2
ijh{kkFkhZ V e (N – 1) ΣX 2 e [ΣX / (N – 1)] = V e
e
2
in V i (n – 1) ΣX i 2 [ΣX / (n – 1)] = V i
i
2
'ks"k V e (N – 1) (n – 1) vUrj [SX / (N – 1) (n – 1)] = V r
r
;ksx V (N – 1) + (n – 1) ΣX 2
X i
+ (N – 1) (n – 1)
V − V Σ 2 − Σ d d 2
r = e r = e r
tt V e Σd 2 e
âkbV dh fofèk dks Li"V djus gsrq ,d mnkgj.k ;gk¡ fn;k x;k gS ftldh lgk;rk ls bls Li‘ le> ldrs gSaA
100 LOVELY PROFESSIONAL UNIVERSITY