Page 98 - DEDU504_EDUCATIONAL_MEASUREMENT_AND_EVALUATION_HINDI
P. 98

'kSf{kd ekiu rFkk ewY;kadu




                    uksV            3-  bl fofèk esa le; vkSj 'kfDr vfèkd viO;; gksrk gS vkSj fo'oluh;rk xq.kd 'kq¼ ugha gksrk gSA ijh{k.k
                                        dh okLrfod fo'oluh;rk lnSo de gksrh gSA
                                    4-  iquiZjh{k.k osQ le; U;kn'kZ osQ lHkh ijh{kkFkhZ dk miyCèk gksuk Hkh lEHko ugha gks ikrk gS ;g Hkh ns[kk
                                        x;k gS fd iquiZjh{k.k esa vH;FkhZ brus xEHkhj ugha jgrs] ftlls muosQ izkIrkadksa esa vfèkd vUrj gks tkrk gSA
                                  LFkkf;Ro xq.kd dk vFkkZiu (Interpretation of Coefficient of Stability)—bl fofèk }kjk tks fo'oluh;rk
                                  xq.kd izkIr gksrk gS mldk vFkkZiu vèkksfyf[kr :i esa dj ldrs gSaμ
                                               ijh{kkFkhZ     izFke ckj      f}rh; ckj
                                                 1.             X 11           X 21
                                                 2.             X              X
                                                                 12              22
                                                 3.             X 13           X 23
                                                 4.             X 14           X 24

                                                 M               M              M
                                                 N             N 1N            X 2N
                                  mldh        X  = T + E    x  = t = e   fopyu
                                               1      1      1     1
                                              X  = T + E 2  x  = t = e 2  fopyu
                                               2
                                                             2
                                  lglEcUèk Kkr djus gsrq ih;jlu lg&lEcUèk fofèk dk iz;ksx djrs gSa ftldk ewy lw=k gSμ
                                                Σ  xx
                                                   12
                                         r xx  =  N σσ  2 x  ∴ x = t + e 1
                                                              1
                                          12
                                                   1 x
                                                             x = t + e 2
                                                              2
                                                                 Σ  (t +  e  )(t +  e  )
                                                               =      1     2
                                                                   N σσ   2 x
                                                                        1 x
                                  tcfd   Σe  = 0,           Σe = 0    tc cM+s U;kn'kZ djrs gS
                                                              2
                                           1
                                                                   Σ  t     Σ  t
                                                               =     2   =    2
                                                                 N σσ   2 x  N σ 2
                                                                     1 x
                                                                  (TΣ−  M) 2
                                  tcfd                       σ =
                                                              x
                                                                      N
                                                                 σ 2  okLrfod vdapfjrk
                                                            r =   1  =
                                                             xx
                                                                 σ 2 x  izkIrkad vdapfjrk
                                  bl fofèk }kjk fo'oluh;rk xq.kd okLrfod vad pfjrk dk va'k gksrk gSA ;g fo'oluh;rk xq.kd dk lS¼kfUrd
                                  vkèkkj gSA LFkkf;Ro xq.kd dk vFkkZiu ØkucSd us ,d vkÑfr dh lgk;rk ls fd;k gS ftlesa nks izdkj osQ
                                  xq.kksa dks lfEefyr fd;k gSμlkekU; vkSj fof'k"VA ;g LFkk;h vkSj nks izdkj osQ xq.k gksrs gSa ftUgsa fuEukafdr
                                  vkÑfr esa iznf'kZr fd;k gSA LFkkf;Ro xq.kd ijh{k.k dh LFkk;h fo'ks"krkvksa osQ dkj.k gksrh gSa] tks ijh{kkFkhZ osQ
                                  lkekU; vkSj fof'k"V nksuksa xq.kksa dks lfEefyr djrh gSA iquiZjh{k.k esa ijh{kk izFke ckj iUnzg tuojh dks vkSj
                                  nwljh ckj iUnzg ebZ dks nh x;h gSA bu nksuksa izkIrkadksa esa lg&lEcUèk ijh{k.k osQ LFkk;h fo'ks"krk ij fuHkZj gksrk
                                  gS ftlesa okLrfod vad osQ lkekU; vkSj fof'k"V nksuksa dkjd lfEefyr gksrs gSaA







         92                                  LOVELY PROFESSIONAL UNIVERSITY
   93   94   95   96   97   98   99   100   101   102   103