Page 100 - DEDU504_EDUCATIONAL_MEASUREMENT_AND_EVALUATION_HINDI
P. 100

'kSf{kd ekiu rFkk ewY;kadu




                    uksV            3-  fxyiQksMZ rFkk vU; fo}kuksa us lkaf[;dh; dh n`f"V ls fo'oluh;rk xq.kd dks Lor% lg&lEcUèk (Self
                                        Correlation) dh laKk nh gSA
                                    4-  ijh{k.k osQ nks lekUrj izk:i eas inksa osQ dfBukbZ Lrj rFkk foHksnhdj.k dh 'kfDr esa lekurk ykuk lEHko
                                        ugha gSA
                                    5-  bl fofèk esa ,d gh fnu ,d gh lewg dks nksuksa ijh{k.k fn;s tkrs gSa blfy, nqckjk osQ ijh{k.k esa Fkdku
                                        vkSj :fp izHkkfor djrh gSA
                                  rqY;rk xq.kd dk vFkkZiu (Interpretation of Coefficient of Equivalence)—bl fofèk }kjk tks fo'oluh;rk
                                  xq.kd izkIr gksrk gS mldk vFkkZiu vxzfyf[kr :i esa dj ldrs gSaμ
                                             ijh{kkFkhZ        izFke ijh{kk (X )      f}rh; ijh{kk (X )
                                                                                                  2
                                                                           1
                                                1.                   X 11                  X 21
                                                2.                   X 12                  X 22
                                                3.                   X                     X
                                                                      13                     23
                                                4.                   X 14                  X 24

                                                M                    M                      M
                                               N                    N 1N                   X 2N
                                                                           Σ  xx
                                                                             12
                                                       rqY;rk xq.kd = r xx  =  N σσ  2 x
                                                                     12
                                                                              1 x

                                                   izFke ijh{k.k izkIrkad              X  15 tuojh
                                                                                        1


                                                   f}rh; ijh{k.k izkIrkad              X  15 tuojh
                                                                                        2
                                                 T = (lkekU; + fof'k"V ) vad
                                                                 1
                                                   = G + S 1  ∴  X  = G + S  + E 1
                                                                      1
                                                               1
                                                T  = (lkekU; + fof'k"V ) vad
                                                 2               2
                                                   = G + S 2  ∴  X  = G + S  + E 2
                                                               2
                                                                      2
                                               lg&lEcUèk                                        = r x, x


                                  bl fofèk esa nks lekUrj ijh{k.kksa osQ izkIrkadksa esa lg&lEcUèk muosQ lkekU; dkjdksa dh otg ls vkrk gSA
                                  bl izdkj fo'oluh;rk xq.kd iquiZjh{k.k fofèk ls de gksrk gSA D;ksfd izkIrkad esa fof'k"V dkjd vkSj vk
                                  tkrk gSA
                                  rqY;rk xq.kd dk vFkkZiu ØkucSd us Hkh lkekU; rFkk fof'k"V dkjdksa vkSj muosQ LFkk;h fo'ks"krk osQ :i esa
                                  fd;k gSμ











         94                                  LOVELY PROFESSIONAL UNIVERSITY
   95   96   97   98   99   100   101   102   103   104   105