Page 95 - DEDU504_EDUCATIONAL_MEASUREMENT_AND_EVALUATION_HINDI
P. 95

bdkbZ—7% fo'oluh;rk% izdkj] fof/;k¡ rFkk mi;ksx




                                                                                                      uksV



                   ijh{k.k dh fo'oluh;rk lkekU;hÑr xq.k ugha gksrh vfirq og ,d fo'ks"k tula[;k osQ fy, fo'ks"k
                   ifjfLFkfr;ksa osQ fy, iz;qDr dh tkrh gSA

            fo'oluh;rk dh ewyHkwr ifjHkk"kk  (Basic Definition of Reliability)

            lS¼kfUrd :i ls ijh{k.k dh fo'oluh;rk dk lEcUèk okLrfod izkIrkadksa ls gksrk gS] tks Nk=k vad izkIr djrk
            gS og mlosQ okLrfod vad ugha gksrs muesa =kqfV gksrh gS] ftls pj =kqfV dh laKk nh tkrh gSA ;g èkukRed vkSj
            ½.kkRed nksuksa gha gks ldrh gSA bldk rkRi;Z ;g gS fd izkIrkad okLrfod vadksa ls de Hkh gks ldrs gSaA bl
            rF; dks vèkksfyf[kr :i esa ts- ih- fxyiQksMZ us ifjHkkf"kr fd;k gSμ
            “Reliability of any set of measurement is logically defined as the proportion of the variance
            that is true variance.”                                            —J.P. Guilford
            ijh{k.k dh oSèkrk dks rkfoZQd <ax ls ifjHkkf"kr fd;k tk ldrk gS fd ;g okLrfod pfjrk va'k gksrk gSA
                                                s
                                      okLrfod vdaka dh pfjrk  σ 1 2
                          fo'oluh;rk =                   =
                                            a
                                        izkIrkdkas dh pfjrk  σ 2 x
            fxyiQksMZ us Hkh fo'oluh;rk dh ;gh ewyHkwr ifjHkk"kk nh gSA bl ifjHkk"kk dk Li"Vhdj.k bl izdkj gSA izkIrkad
            = (okLrfod vad + =kqfV vad)

                                  okLrfod vad $ =kqfV vad

                             X           T                  E       izkIrkad


                                          σ 2  okLrfod vadka dh pfjrk
                                                          s
                                      r =   1  =
                                       u
                                          σ 2 x    ikIrkdkas pfjrk
                                                    z
                                                       a
                                             σ 2     =kfV vdapfjrk
                                                       q
                                                  1
                                      r = 1 –   e  =−
                                       u
                                             σ 2 x    izkIrkadka pfjrk
                                                            s
            tcfd                      X = T + E
            izkIrkad = (okLrfod vad + =kqfV vad)
                                      σ = σ  + σ 2 e
                                       2
                                           2
                                       x
                                           1
            izkIrkad pfjrk = okLrfod vad pfjrk + =kqfV vad pfjrk
                                    σ 2 x  =   σ 1 2  +  σ 2 e
                                    σ 2 x  σ  2 x  σ  2 x         (izkIrkad pfjrk dks Hkkx nsus ij)
                                              σ 2             ⎛    σ 2 ⎞
                                       1= r  +   e  ∴ pw¡fd   ⎜  r =  1
                                          u
                                             σ 2 x            ⎝  u  σ ⎠  2 ⎟  x
                                     σ 2 e  = 1 – r   ⇒  σ  = σ  (1 – r )
                                                      2
                                                  2
                                    σ 2 x    u    e   x    u
                                       2
                                           2
                                      σ = σ  (1 – r )
                                           x
                                       e
                                                u
                                             LOVELY PROFESSIONAL UNIVERSITY                                       89
   90   91   92   93   94   95   96   97   98   99   100