Page 95 - DEDU504_EDUCATIONAL_MEASUREMENT_AND_EVALUATION_HINDI
P. 95
bdkbZ—7% fo'oluh;rk% izdkj] fof/;k¡ rFkk mi;ksx
uksV
ijh{k.k dh fo'oluh;rk lkekU;hÑr xq.k ugha gksrh vfirq og ,d fo'ks"k tula[;k osQ fy, fo'ks"k
ifjfLFkfr;ksa osQ fy, iz;qDr dh tkrh gSA
fo'oluh;rk dh ewyHkwr ifjHkk"kk (Basic Definition of Reliability)
lS¼kfUrd :i ls ijh{k.k dh fo'oluh;rk dk lEcUèk okLrfod izkIrkadksa ls gksrk gS] tks Nk=k vad izkIr djrk
gS og mlosQ okLrfod vad ugha gksrs muesa =kqfV gksrh gS] ftls pj =kqfV dh laKk nh tkrh gSA ;g èkukRed vkSj
½.kkRed nksuksa gha gks ldrh gSA bldk rkRi;Z ;g gS fd izkIrkad okLrfod vadksa ls de Hkh gks ldrs gSaA bl
rF; dks vèkksfyf[kr :i esa ts- ih- fxyiQksMZ us ifjHkkf"kr fd;k gSμ
“Reliability of any set of measurement is logically defined as the proportion of the variance
that is true variance.” —J.P. Guilford
ijh{k.k dh oSèkrk dks rkfoZQd <ax ls ifjHkkf"kr fd;k tk ldrk gS fd ;g okLrfod pfjrk va'k gksrk gSA
s
okLrfod vdaka dh pfjrk σ 1 2
fo'oluh;rk = =
a
izkIrkdkas dh pfjrk σ 2 x
fxyiQksMZ us Hkh fo'oluh;rk dh ;gh ewyHkwr ifjHkk"kk nh gSA bl ifjHkk"kk dk Li"Vhdj.k bl izdkj gSA izkIrkad
= (okLrfod vad + =kqfV vad)
okLrfod vad $ =kqfV vad
X T E izkIrkad
σ 2 okLrfod vadka dh pfjrk
s
r = 1 =
u
σ 2 x ikIrkdkas pfjrk
z
a
σ 2 =kfV vdapfjrk
q
1
r = 1 – e =−
u
σ 2 x izkIrkadka pfjrk
s
tcfd X = T + E
izkIrkad = (okLrfod vad + =kqfV vad)
σ = σ + σ 2 e
2
2
x
1
izkIrkad pfjrk = okLrfod vad pfjrk + =kqfV vad pfjrk
σ 2 x = σ 1 2 + σ 2 e
σ 2 x σ 2 x σ 2 x (izkIrkad pfjrk dks Hkkx nsus ij)
σ 2 ⎛ σ 2 ⎞
1= r + e ∴ pw¡fd ⎜ r = 1
u
σ 2 x ⎝ u σ ⎠ 2 ⎟ x
σ 2 e = 1 – r ⇒ σ = σ (1 – r )
2
2
σ 2 x u e x u
2
2
σ = σ (1 – r )
x
e
u
LOVELY PROFESSIONAL UNIVERSITY 89