Page 115 - DMTH401_REAL ANALYSIS
P. 115

Unit 9: Functions




                                                                                                Notes
                               x   x         x   x
                     Either sin   1  2   = 0, or cos   1  2  = 0.
                                 2              2
                 x   x       x   x
          If sin   1  2  = 0, then   1  2   = 0,  , + 2, ...
                   2            2

                 x   x       x   x         3
          If cos   1  2  = 0, then   1  2   = 0,    ,    , ...
                   2            2         2    2
                         
          Since x , x   [–    ]. Therefore we can only have
                1  2
                       2  2
                      x   x  
                 –      1  2   
                   2     2     2
                      x   x  
          and    –      1  2   
                   2     2     2
                x  x                   x   x    
          Thus,   1  2  = 0 i.e., x  = x . Also, if   1  2   = 
                  2         1   2         2       2
          i.e. then x  + x  =  x.
                  1  2
                         x  x
          Since  x,, x,  [–  ,   ],
                         2  2
                                      
          therefore, x  = x  =    or x, = x  = –
                    1  2           1
                           2           2
          Hence (x ) = f(x )  x, = x,, which proves that f is one-one. Then function f(x) = sin x defined as
                 1     2
          such, is not onto because you know that the range of sin x is [–1, 1]  R.
                                            Figure  9.4



































                                           LOVELY PROFESSIONAL UNIVERSITY                                   109
   110   111   112   113   114   115   116   117   118   119   120