Page 213 - DMTH401_REAL ANALYSIS
P. 213

Unit 16: Uniform Convergence and Continuity




                                                                                                Notes
                                                                
                                                       x
                                            x
                         f -  f  sup <  Þ f  n ( )    f  ( )   f n ( )+  , x
                                                                      "
                                                            x
                         n
                                   4(b a )    4(b a )           4(b a )
                                                                   -
                                                 -
                                     -
          i.e.
                                                         
                                                   x
                                        f
                                          x
                                    sup ( )   sup f n ( )+  .
                                                         -
                                    [ i t - 1 , i t  ]  [ i t - 1 , i t  ]  4(b a )
          Then
                              n                 n  æ            ö
                          P
                                     x
                                    f
                                                        x
                         f
                      U ( , ) = å  sup ( )(t -  t i- 1 )  å ç  sup f n ( )+  ÷  (t - t i- 1 ) =
                                        i
                                                                    i
                                                              -
                              i= 1  [ i t - 1 , i t  ]  i= 1 è  [ i t - 1 , i t  ]  4(b a )ø
                                              n                
                                     P
                                                          f
                                  f
                               = U ( , )+     å (t - t  1 ) U ( , )+  .
                                                       =
                                                             P
                                   n
                                                           n
                                                 i
                                        4(b a  ) i= 1  i-       4
                                           -
          Similarly,
                                                       
                                          f
                                        L ( , )   L ( , )-  .
                                                    P
                                                 f
                                           P
                                                  n
                                                       4
          So
                                                                
                                -
                                                       P
                                          f
                                   f
                                                     f
                            f
                          U ( , ) L ( , ) U ( , )+  -  L ( , )+  +  +  = 
                                             P
                              P
                                       
                                     P
                                           n         n
                                                4          4 2  4  4
                  b         b
                              x
                                dx
                     x
          Claim 2:   a ò  f  n ( )dx ®  a ò  f ( ) .
                                                                             ).
                                                                          -
          Since  f -  f  sup  ®  0,  given   >  there exists N    s.t.  n"   N  : f -  f  sup  <  /(b a  Therefore,
                                   0
                                                              n
                n
          " n   N  :
                            b        b         b        b
                                                                x
                                                           x
                               x
                            a ò  f n ( )dx -  a ò  f ( )dx =  a ò  f n  ( )dx  a ò  f n  ( )-  f  ( ) dx 
                                        x
                                                  x
                             b                            
                                                               -
                             a ò    dx =  f -  f  sup  (b a <  (b a ) (b a =  .
                                                                 )
                                                     )
                                                   -
                                  f
                               f -
                               n
                                           n
                                   sup
                                                          -
                                number
          Much more can be said about convergence and integration if we consider the Lebesgue integral
          instead of the Riemann integral. To focus on Lebesgue integration, for example, we would first
          define the concept of “convergence almost everywhere”:
          16.4 Convergence almost Everywhere
          A sequence f  defined on a set D converges (pointwise or uniformly) almost everywhere if there
                    n
          is a set S with Lebesgue measure zero such that f  converges (pointwise or uniformly) on D\S.
                                                  n
          We say that f  converges (point wise or uniformly) to f a.e.
                     n
          In other words, convergence a.e. means that a sequence converges everywhere except on a set
          with measure zero. Since the Lebesgue integral ignores sets of measure zero, convergence a.e. is
          ready-made for that type of integration.
                                           LOVELY PROFESSIONAL UNIVERSITY                                   207
   208   209   210   211   212   213   214   215   216   217   218