Page 209 - DMTH401_REAL ANALYSIS
P. 209

Unit 15: Uniform Convergence of Functions




          15.7 Review Questions                                                                 Notes


                                              n
                                  ì 1,  x  Î  [0, 1/ ]
          1.   Let I = [1, 2] and  ( )= í        . f  converges pointwise to
                             f x
                              n                     n
                                             n
                                  î 0, x Î  [1, 2/ , 1]
                                      n
                          ì 1,  x Î  [0, 1/ ]
                     f x
               f(x) =   ( )= í           . f  but does not converge uniformly to f.
                     n    0, x  Î  [1, 2/ , 1]  n
                                     n
                          î
          2.   Let  =I  [0, 1]  and  f  to from Figure 15.5. Then  f  converges to the zero function pointwise
                             n
                                                     n
               and uniformly.
                                    1
                                        .
                               x
          3.   Let  =I  (0, ¥  and   f n ( )=  ( + n ) 2  Then  f  converges to  ( ) =f x  0  pointwise and uniformly.
                        )
                                   x
                                              n
          4.   { f n n ¥ =  1   be a sequence of real-valued functions on  [ , ]a b . If all  f  are all continuous and
                 }
                                                                  n
                f   f  uniformly on  [ , ]a b  then the limit function f is continuous.
                n
          5.   Let  I n  =  ( -  1/3, n +  1/3), n  Î  . Then  { }I  n n  Î   covers   , but does not cover    or {1/2}.
                      n
                           -
                                   +
               Let  =S  {1} È (3 1/4, 3 1/4). Then  { }I n n  Î   is a cover for S. Moreover,  { ,I I 3  is a finite
                                                                              }
                                                                           1
               subcover. Consider another case where  { }I n n  Î   is a cover of ¥. Here  { }I  n n  Î   has no finite
               subcover.
                                   n
          6.   Let  I n  = ( 1 1/ , 1 1/ ), n Î   \{1}. We see that the collection {(–3/4, 3/4)} is a finite
                               -
                      -
                            n
                         +
                                -
               subcover for set  =S  [ 17/24, 17/24].  Now, consider set  = ( 1,1).  Is  { }I  n n  ³  2  a cover for
                                                                -
                                                             S
               S? The answer is positive and  { }I n n  ³ 2  has no finite subcover.
          Answers: Self  Assessment
          1.   uniform convergence               2.  converges pointwise
          3.   S      if  S   È aÎA  I a      4.  subcover of  { }I  a aÎA
          15.8 Further Readings
           Books      Walter Rudin: Principles of Mathematical Analysis (3rd edition), Ch. 2, Ch. 3.
                      (3.1-3.12), Ch. 6 (6.1 - 6.22), Ch.7 (7.1 - 7.27), Ch. 8 (8.1- 8.5, 8.17 - 8.22).
                      G.F.  Simmons: Introduction  to Topology and Modern  Analysis,  Ch.  2(9-13),
                      Appendix 1, p. 337-338.
                      Shanti Narayan: A  Course of Mathematical Analysis, 4.81-4.86, 9.1-9.9, Ch.10,
                      Ch.14, Ch.15(15.2, 15.3, 15.4)
                      T.M. Apostol: Mathematical Analysis, (2nd Edition) 7.30 and 7.31.
                      S.C. Malik: Mathematical Analysis.
                      H.L. Royden: Real Analysis, Ch. 3, 4.














                                           LOVELY PROFESSIONAL UNIVERSITY                                   203
   204   205   206   207   208   209   210   211   212   213   214