Page 259 - DMTH401_REAL ANALYSIS
P. 259

Unit 20: The Riemann Integration




                                                                                                Notes
                  b         b
                    f(x) dx =    f(x) dx
                  a         a
          Similarly L(P, f) =  U L(P,f).

                  h          b
                             
                    f(x) dx =  A f(x) dx
                  a          a
          Since f is integrable in [a,b], therefore
                                     6       b       b
                                      f(x) dx =   f(x) dx =   f(x) dx.
                                     a       a       a

                6        6          b
          Hence     f(x) dx =   f(x) dx =     f(x) dx,
                         
                                    a
          whether  0 or  < 0.
                             b         b
                 f R [a,b]and  
          Hence   Î           f(x) dx =    f(x) dx.
                             a         a
          Now suppose that  = –1. In this case the theorem says that if f  Î R [a,b], then  ( f) R[a,b]- Î

           b         b
            -
            [ f(x)]dx =    f(x) dx.
           a        - a
          Theorem 11: If f Î R [a,b], g Î R [a,b],. then f + g Î R [a,b] and
           b          b      b
             +
            (f g)(x)dx  =  f(x) dx +    g(x) dx.
                      a      a
          Proof: We first show that f+g Î R [a,b]. Let Î > 0 be a given number. Since f Î R [a,b], g Î R [a,b],
          there exist partitions P and Q of [a,b] such that U(P,f) – L(Pf) < Î/2 and U (Q,g) – L (Q,g)
          < Î/2
          If T is a partition of [a,b] which refines both P and Q, then
          U(T,f) – L(T,f) < Î/2 [U(T,f) – L(T,f) £ U(P,f) – L(P,f)].
          Similarly,

          U(T,g) – L(T,g) < Î/ 2                                                    (5)
          Also note that, if M  = sup {f(x) : x  £ x £ x }
                          i          i-1    i
          and
          N  = sup {g(x): x  6 x £ x }
            i          i-1   i
          then,
          sup {f(x) + g(x): x  £ x £ x } £ M  + N .
                        i-1    i   1   i
          Using this, it readily follows that
          U(T, f+g) £ U(T,f) + U(T,g)
          for every partition T of [a,b]. Similarly

          L(T,f+g) L(T,f) + L(T,g)
          for every partition T of [a,b].
          Thus U (T,f+g) – L (T,f+g) £ [U(T,f) + U(T,g) – L [(T,f) + L(T,g)]




                                           LOVELY PROFESSIONAL UNIVERSITY                                   253
   254   255   256   257   258   259   260   261   262   263   264