Page 263 - DMTH401_REAL ANALYSIS
P. 263

Unit 20: The Riemann Integration




          Therefore,                                                                            Notes
                                U(P,f) – L(P,f) £ (A + Î/14) – (A – Î/4)
                                            = Î/2 < Î.
          In other words, f Î R(a,b). Thus

                                     b       b       b
                                      f(x) dx =   f(x) dx =    f(x) dx.
                                     a       a       a

                      b       h
          Since  L(P,f) £   f(x) dx £   f(x) dx £  U(P,f),  therefore
                      a
                                              b
                                       L(P,f) £    f(x) dx £  U(P,f).             (13)
                                              a
          From (12) and (13), we get
                                              b
                                     A – Î/4 £    f(x) dx £  A+ Î /4.
                                              a
          That is,

                                 b
                                        -
                                  f(x) dx A £ Î/4 < e.
                                 a
                                  b                   b
          Since Î is arbitrary, therefore  f(x) dx A-  =  0,  that is,  f(x) dx =  A =  lim S(P,f).  This completes
                                  
                                                      
                                  a                   a          P  0
          the proof of the theorem.
          To illustrate this theorem, we give two examples.

                                 b    b
                 Example: Show that  dx =   1 dx =  b a.
                                             -
                                 
                                 a    a
          Solution: Here, the function f: [a,b]  R is the constant function f(x) = 1.
          Clearly, for any partition P = (x , x,, ...., x ) of [a,b], we have
                                   0       n
             S(P,f) = (x  – x )f(t ) + (x  – x ) f(t ) + ....... + (x  – x )f(t )
                     1  0  1    2  l  2         n  n-1  n
                  = (x  – x )1 + (x  – x )1 + ....... + (x  – x )1 = b – a.
                     1  0     2  1          n  n-1
                                        b
          Since S(P,f) = b – a, for all partitions,  1 dx =  lim S(P,f) =  b a.
                                                         -
                                        
                                        a     P   0
                                         2
                                 b      b -  a 2
                 Example: Show that  x dx =  .
                                 
                                 a        2
          Solution: The function f:[a,b]  R in this example is the identity function f(x) = x.
          Let P = (a = x,, x,, …, x  = b) be any partition of [a,b]. Then
                            a
          S(P, f) = (x  – x ) f(t ) + (x  – x ) f(t ) + .... + (x  – x ) f(t ), where t  Î [x , x ,], t  Î [x , x ], …
                  1   0  l    2  1  2        n  n   n       1   0  1  2   1  2
          t  Î [x , x ] are arbitrary. Let us choose
           n   n-1  n
                                   x +  x    x +  x      x   +  x
                                                           -
                                t =  0  1  ,t =  1  2  ,¼ , t =  n 1  n  .
                                 1        2           n
                                      2        2            2


                                           LOVELY PROFESSIONAL UNIVERSITY                                   257
   258   259   260   261   262   263   264   265   266   267   268