Page 265 - DMTH401_REAL ANALYSIS
P. 265

Unit 20: The Riemann Integration




          This gives us the following method for finding the limit of sum of n terms of a series:  Notes
          1.   Write the general rth term of the series.

                             r
                          1 æ ö              1                r
                                ,
          2.   Express it as   f ç ÷  the product of    and a function of   .
                          n è ø              n                n
                             n
                      r         1
          3.   Change    to x and    to dx and integrate between the limits 0 and a. The n value of the
                      n         n
               resulting integral gives the limit of the sum of n terms of the series.
          Since each term of a convergent series tends to 0, the addition or deletion of a finite number of
          terms of the series does not affect the value of the limit. Similarly, you can verify that
                                 2n 1  æ  r ù ö  2
                                   é
                              lim å  ê  f ç ÷ ú  =   f (x) dx,
                              n¥  r 1 n  è  n ø û  0
                                  = ë
                                   é
                                 3n 1  æ  r ù ö  3
                              lim å  ê  f ç ÷ ú  =   f (x) dx,  and so on.
                              n¥  r 1 n  è  n ø û
                                  = ë
          As an illustration of these results, consider the following examples.

                 Example: Find the limit, when n tends to infinity, of the series

                                     1     1     1        1
                                        +     +    +¼+       .
                                    n 1   n +  2  n + 3  n +  n
                                     +
                                                         æ    ö
                                             n   1    n 1 ç  1 ÷
          Solution: General (rth) term of the series is  å  =  å  .
                                             r 1 n r+  r 1 n  ç  r ÷
                                                      =
                                             =
                                                         ç  1 +  ÷
                                                         è   n ø
                        æ    ö
                    n 1 ç  1 ÷  1  1
          Hence,  lim å       =     =  dx =  log 2.
                 n¥  r 1 n  ç  r ÷  0 1 x+
                    =
                        ç 1 +  ÷
                        è  n ø
                 Example: Find the limit, when n tends to infinity, of the series

                               1      1       1             1
                                  +       +        +¼+            .
                                              2
                                                          2
                                      2
                               n 2   n -  1  n -  2  2   n - (n 1) 2
                                                              -
                                  n      1
          Solution: Here the rth term  =  å
                                       2
                                           -
                                  =
                                  r 1  n - (r 1) 2
          Since it contains (r – 1), we consider its (r + l)th term i.e.,
                  n    1      n 1   1
          the term  å       =  å       2
                       2
                  r 0  n -  r  2  r 0 n  æ  r ö
                  =
                              =
                                 1 + ç ÷
                                    è  n ø

                                           LOVELY PROFESSIONAL UNIVERSITY                                   259
   260   261   262   263   264   265   266   267   268   269   270