Page 264 - DMTH401_REAL ANALYSIS
P. 264

Real Analysis




                    Notes                                     x +  x        x +  x             x +  x
                                   Then,         S(P,f) =  (x -  x )  1  0  +  (x -  x )  2  1  +¼+  (x -  x n 1 )  n  n 1
                                                                                                    -
                                                                          1
                                                                                        n
                                                                                            -
                                                         1
                                                             0
                                                                       2
                                                                 2            2                  2
                                                        1
                                                                                     )
                                                                               2
                                                          x -
                                                      =  é ë ( 1 2  x 0 2 ) (x+  2 2  -  x 1 2 ) +¼+  (x -  x 2 n 1 û ù
                                                                               n
                                                                                   -
                                                        2
                                                        1         1
                                                           2
                                                                     2
                                                      =  (x -  x 2 0 ) =  (b -  b 2 ).
                                                           n
                                                        2         2
                                                     1
                                                        2
                                   Here  again,  S(P,f) =  (b -  a  2  ),   no  matter  what  the  partition  P  we  may  take,  Hence
                                                     2
                                   b       b                1
                                                              2
                                                                  2
                                    f(x) dx =   x dx =  lim S(P,f) =  (b -  a ).
                                                  P 
                                                    0
                                   a       a                2
                                   The converse of Theorem 15 is also true which we state without proof as the next theorem.
                                   Theorem  16:  If  a  function  f  is  Riemann  integrable  on  a  closed  interval  [a,b],  then
                                                              b
                                   lim S(P,f) exists and lim S(P,f)=    f(x) dx.
                                   P   0           P  0
                                                              a
                                   One of the important application of Theorem 16 is in computing the sum of certain power series.
                                   For, let us consider a partition P of [a,b] having n sub-intervals, each of length h so that nh =
                                   b – a. Then P can be written as P = (a, a + h, a + 2h, ..., a + nh = b).
                                   Let t, = a + ih, i = 1,2 ,...., n. Then
                                                       n
                                                                                        +
                                                                     +
                                                                        +
                                                 S(P,f) å  f(t )   x =  h[f(a h) f(a 2h) +¼+  f(a nh)].
                                                                            +
                                                          i   i
                                                      i 1
                                                       =
                                   When  lim S(P,f)  exists, then
                                        P  0
                                                                                      h
                                                                    +
                                                            +
                                                     lim h[f(a h) f(a 2h) +¼+  f(a nh)] =   f(x) dx.
                                                                               +
                                                                +
                                                     n¥
                                                     h 0                             a
                                   In the above formulae, we can change the limits of integration from a, b to 0, a, where a Î N. For,
                                                 b a
                                                   -
                                   by changing h to   ,  it is easy to deduce from above formula that
                                                  an
                                   (b a)    1  n  é  (b a) r ù  b
                                     -
                                                      -
                                        lim å  f a +      ú   f(x) dx.                                     (14)
                                                           =
                                     a  n¥  n  = ë ê  a  hû  a
                                        b       (b a)  a  é  (b a) ù
                                                              -
                                                  -
                                   But,    f(x) dx =   f a +   x dx.
                                                        ê
                                                                  ú
                                        a         a   0  ë   a    û
                                   Therefore, from (14), we get
                                        1  n  é  (b a) r ù  a  é  (b a) ù
                                                                 -
                                                  -
                                     lim å f a +      ú  f a +     x dx.                                   (15)
                                                        =
                                     n¥  n  r 1 ë ê  a  n û  0  ê ë  a  ú û
                                          =
                                   In (15), put a = 0, b = a. We get the following result:
                                   If f is integrable in [0,a], then
                                                                   n  1 æ ö  a
                                                                        r
                                                               lim å  f ç ÷   f(x) dx.
                                                                          =
                                                                        n
                                                               n¥ r 1 n è ø  0
                                                                   =
          258                               LOVELY PROFESSIONAL UNIVERSITY
   259   260   261   262   263   264   265   266   267   268   269